27th Annual Meeting

April 24–27, 2002
Seattle, Washington

Program and Abstracts
Wednesday, April 24, 2002
8:00 am Andrology Laboratory Workshop
 The Andrology Laboratory of the Future: Impact of the Genomic and Proteomic Revolutions (concludes at 5:00 pm)

5:30 pm Welcome and Opening Remarks
5:45 pm Distinguished Andrologist Award
6:00 pm Serono Lecture
 • Of Genes and Genomes
 David Botstein, Stanford University

7:15 pm Welcome Reception

Thursday, April 25, 2002
8:00 am Solvay/Unimed Lecture
 • Androgen Therapy in the Older Man-Where Are We Now and Where Are We Going?
 Lisa Tenover, Emory University

8:55 am Distinguished Service Award
9:05 am Biopore Lecture
 • Global Analysis of Germline Gene Expression
 Sam Ward, University of Arizona

10:00 am Coffee Break and Exhibits
10:30 am Concurrent Oral Sessions I, II, III
 • Basic and Clinical Aspects of Male Sexual Dysfunction
 • Hormonal Control and Cellular Aspects of Spermatogenesis
 • Basic and Clinical Aspects of Sperm Maturation in the Epididymis

12:15 pm Women in Andrology Luncheon
 • Perspectives on Success and Satisfaction as a Woman in Andrology

1:30 pm Symposium I: HIV
 • Male Circumcision and HIV Acquisition and Transmission
 Ron Gray, Johns Hopkins University
 • HIV: How is it Transmitted and Who is at Risk?
 Dave Phillips, Population Council
 Christopher Miller, Univ. of CA - Davis

3:00 pm Refreshment Break and Exhibits
3:30 pm Women in Andrology Lecture
 • Paternal Exposure to Cyclophosphamide: Mechanisms and Consequences
 Barbara Hales, McGill University

4:30 pm Poster Session I
7:00 pm Trainee Colloquium & Soiree

Friday, April 26, 2002
7:00 am Past Presidents' Breakfast
8:00 am AUA Lecture
 • Nerve Grafting During Radical Prostatectomy
 Ed Kim, Univ. of Tennessee

8:55 am Young Investigator Award
9:05 am Buckeye Lecture
 • Androgenic Regulation of Apoptosis in the Prostate Gland and in Prostate Cancer
 R. Buttyan, Columbia University

10:00 am Coffee Break and Exhibits
10:30 am Symposium II: Proteomics/Genomics:
 Will This Revolutionize Andrological Research?

12:00 pm Laboratory Science Lunch
1:30 pm Symposium III: Do Gene Defects Impact Male Reproduction: If So, How?
 • The Battle of the Sexes: Sry and the Control of Testis Organogenesis
 • Natural Potent Androgens: Lessons from Human Genetic Models
 J. Imperato-McGinley, Cornell University
 • Genetic Defects in Male Reproduction
 Stephanie Seminara, Harvard University

3:00 pm Refreshment Break and Exhibits
3:15 pm Plenary Lecture
 • The Ins & Outs of PSMA, the Evolving and Intriguing Tale of its Prostate Biology & Tumor Targeting
 W.D. Heston, Cleveland Clinic

4:05 pm Schering Lecture
 • Bioethics and Stem Cell Research
 Laurie Zoloff, San Francisco State Univ.

5:00 pm Poster Session II
7:00 pm Banquet

Saturday, April 27, 2002
8:00 am Latin American Lecture
 • Phenotypes of Sperm Pathology: A Journey from Descriptive Morphology to Molecular Genetics
 Hector Chemes, Buenos Aires Children's Hospital

9:00 am Symposium IV: Are there Estrogen Effects on the Testis?
 • Uncovering a Role for Estrogen Receptors in Male Reproduction
 Ken Korach; N/EHS
 • Estrogen Effects on the Developing Testis: Direct or Indirect Effects?
 Richard Sharpe, Edinburgh
 • Developmental Effects of Estrogenic Chemicals
 Fred vom Saal, Univ. Missouri-Columbia

10:30 am Break
10:45 am Symposium V: The Molecular Basis of Erectile Physiology: From Bench to Bedside
 (Sponsored by an unrestricted educational grant from the Bayer Pharmaceutical Division)
 Wayne Hellstrom, Tulane University; George Christ, Albert Einstein College of Medicine; Thomas Mills, Medical College of Georgia; Arthur Burnett, Johns Hopkins Hospital)

12:15 pm Business Meeting & Awards Presentation
12:45 pm Conclusion of Annual Meeting

2:15 pm Postgraduate Course: Andrology: Genes, Hormones & Environment
 • Session 1- Prostate Cancer: Update and Diagnostics (including gene-based)

Sunday, April 28, 2002
7:20 am Postgraduate Course
 • Session 2-Infertility and Testicular Cancer: Genetics, Environment, Counseling and Testing
 (concludes at 10:45 am)
Welcome to the 27th Annual Meeting of the American Society of Andrology. The Annual Meeting is an important means, perhaps the most important means, by which ASA seeks to fulfill its missions, which are to advance and promote basic knowledge of the male reproductive tract and of clinical andrology, to foster interdisciplinary collaboration and communication, and to attract young investigators to the field. I am certain that you will find these missions fulfilled at this meeting, thanks to Dr. Erv Goldberg, Program Chair, Dr. Jacquetta Trasler, Postgraduate Course Chair and their committees. The symposia, state-of-the-art lectures and Postgraduate Course reflect the unique partnership of basic scientists and clinicians that ASA represents. The sessions are designed to be multi-disciplinary, often are bench-to-bedside, and span new areas of clinical andrology, endocrinology, urology, infertility, contraception, cell biology and molecular biology. Among the topics to be discussed are: scientific and medical implications of the human genome, germline gene expression, HIV transmission, reproductive toxicology, radical prostatectomy, prostate cancer, proteomics/genomics, gene defects, gene therapy, bioethics and stem cell research, sperm motility, estrogen effects on the testis, and erectile dysfunction. I believe it fair to say that, through the efforts of Drs. Goldberg, Trasler and their committees, the 27th Annual Meeting reflects the diverse interests of ASA members exceptionally well, and, at the same time, takes us beyond our comfort zones — exactly what a vibrant meeting should do.

Perhaps the least visible component of a successful meeting is local arrangements. Fortunately, we have a very strong Local Arrangements Committee in Seattle, chaired by Dr. Alvin Matsumoto. If all goes smoothly, part of the reason is the hard, behind-the-scenes work of Dr. Matsumoto and his committee. (If all is not smooth, blame the President.)

We also all owe a debt of gratitude to Sabrina Ritchie and Kent Lindeman of the ASA business office, Holland-Parlette Associates. Their roles in organizing a meeting such as this, and, as importantly, in the day-to-day running of the Society, are essential. I am most appreciative.

Finally, you should all be aware that the annual meeting, and therefore our Society, is benefiting greatly from the generosity of its sponsors. Indeed, the sponsorship of the meeting is growing --- and needs to. We cannot, and must not, take the support we receive lightly. Please express your thanks to our sponsors when you visit the exhibits and when you attend the lectures and symposia sponsored by them.

With any luck, the year 2002 will be better than 2001! Hopefully, our 27th Annual Meeting will be among its highlights. I hope you enjoy it, and gain greatly from it.

Barry R. Zirkin, PhD.
President, American Society of Andrology

past presidents of the american society of andrology

| 2000-2001 | J. Lisa Tenover | | |

* Deceased
American Society of Andrology

OFFICERS
President
Vice President
Treasurer
Secretary
Past President
Barry R. Zirkin, PhD
Jon L. Pryor, MD
Christopher J. DeJonge, PhD, HCLD
Terry R. Brown, PhD
J. Lisa Tenover, MD, PhD

MEMBERS OF THE EXECUTIVE COUNCIL
Janice L. Bailey, PhD; Adrian S. Dobs, MD, MHS; Joanna Ellington, DVM, PhD; Janice Evans, PhD; Marc Goldstein, MD, FACS; Michael D. Griswold, PhD; Jonathan P. Jarow, MD; Gary Klinefelter, PhD; Patricia L. Morris, PhD; Pasquale Patrizio, MD; Kenneth P. Roberts, PhD; Carlos A. Suarez-Quian, PhD

COMMITTEE CHAIRS
2002 Program Chair
2002 Local Arrangements
Andrology Laboratories
Archives & History
Awards
Constitution & Bylaws
Development
Finance
Future Meetings
Industrial Relations & Exhibits
International Liaison
Laboratory Science Forum
Membership
Minority Affairs
Nominating
Publications
Society Liaison
Trainee Affairs
Erwin Goldberg, PhD
Alvin Matsumoto, MD
Gregory Kopf, PhD
Jean Fourcroy, MD, PhD, MPH
Ashok Agarwal, PhD, HCLD
Joanna Ellington, DVM, PhD
J. Lisa Tenover, MD, PhD
Gail Prins, PhD
Bernard Robaire, PhD
Charles Muller, PhD
Carlos Morales, DVM, PhD
Aniela Bollendorf, MT
Marc Goldstein, MD, FACS
Matthew Hardy, PhD
Samir Subas Raychoudhury, MVSC, PhD
Wael Salameh, PhD
Paul Cooke, PhD
Wayne Hellstrom, MD, FACS
Stuart Ravnik, PhD

JOURNAL OF ANDROLOGY EDITORIAL OFFICE
6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455
Phone: (612) 625-1488 • Fax: (612) 625-1163 • Email: andrology@lenti.med.umn.edu
Editors-in-Chief: David W. Hamilton, PhD and Jon L. Pryor, MD
Editorial Assistant: Michele Lewis

EXECUTIVE OFFICE
ASA • 2950 Buskirk Avenue, Suite 170 Walnut Creek, CA 94596
Phone: (925) 472-5910 • Fax: (925) 472-5901 • Email: asa@hp-assoc.com • www.andrologysociety.com
Executive Director: Sabrina Ritchie • Administrative Manager: Katka Loomisova

NOTICE TO READERS
All events will be held at the Seattle Sheraton Hotel and Towers. Room names are listed directly beneath the lecture/event name in the detailed program of events. Every effort has been made to ensure that the information printed here is correct; however, details (especially room assignments) are subject to change. Be sure to check the hotel reader board for the most up-to-date information while you are at the meeting.
For additional information on ASA’s 27th Annual meeting, contact ASA staff via phone at (925) 472-5910, fax at (925) 472-5901 or email asa@hp-assoc.com or visit ASA’s website at http://www.andrologysociety.com.

The 2002 banquet will be held at the Sheraton Seattle Hotel & Towers on Friday, April 26 at 7:00pm. Tickets can be purchased for $60.00 per person. Extra tickets can be purchased on-site.

ASA’s Exhibit Hall features equipment and information pertinent to andrologists and will be open April 25-26 (Thursday-Friday). Make a point to visit all the exhibitors to be eligible to win the raffle drawing (held in the Exhibit Hall on Friday afternoon).

The official hotel for the 27th Annual Meeting of the American Society of Andrology is the Sheraton Seattle Hotel & Towers. For reservations, please call (800) 204-6100 or (206) 447-5555. Don’t forget to mention you are attending the ASA Annual Meeting to receive the reduced room rate. The following room rates are being offered to ASA attendees until March 20, 2002. After that regular room rates may apply, so we urge you to make your reservations as soon as possible. Rates are $176 per person (single/double occupancy). A limited number of rooms have been set aside for students at the $131 per person rate. These will be filled on a first-come, first served basis.

Overflow hotel accommodations can be made at the West Coast Grand Hotel which is located 2 blocks from the Sheraton. Rates are $162 per night, single/double occupancy and can be made by calling (800) 325-4000 or (206) 971-8000. Please indicate you are with the American Society of Andrology to receive group rate.

The 2002 Laboratory Science Forum will be held at 12:00 noon on Friday, April 26. Lunch tickets are available for $30 per person.

Join us on Wednesday, April 24 at 7:15 pm for a Welcome Reception to connect with friends and colleagues. Admission to the reception is included in your registration fee.

Poster sessions will be held Thursday (4:30 pm-7:00 pm) and Friday (5:00 pm-7:00 pm) in Grand Ballroom A-B and the Grand Ballroom Lobby. Poster boards will be 4' X 8'. Presenters should put up their posters the morning of their session and stand near their posters during the formal poster session to answer questions about their research and findings. Posters must be removed at the close of the session. Any posters remaining the following morning will be removed.

The meeting registration and information desk will be open at the following times for on-site registration:

- Wednesday, April 24: 7:00 am-6:00 pm
- Thursday, April 25: 7:00 am-6:00 pm
- Friday, April 26: 7:00 am-6:00 pm
- Saturday, April 27: 7:00 am-5:00 pm
- Sunday, April 28: 7:00 am-10:00 am

The Juniper Room, located on the second floor of the hotel, will be available from 7:00 am until 11:00 pm, Wednesday, April 24 through Saturday, April 27 for previewing slides and preparing presentations.

The Trainee Colloquium will begin at 7:00 pm on Thursday, April 25 with the Soirée following immediately thereafter. Both events are free of charge and open to everyone.

The Sheraton Seattle Hotel & Towers is located in downtown Seattle 20 minutes from the Seattle Tacoma Airport. Transportation options from the airport to the hotel include Airporter shuttles which leave every 1/2 hour ($8 one way) and taxi ($25-30 one way).

The Women in Andrology group, which exists to promote the visibility and contributions of women within the Society and the field of Andrology, meets for lunch each year at ASA’s Annual Meeting. This year’s luncheon will be held Thursday, April 25 at 12:15pm and will highlight “Perspectives on Success and Satisfaction as a Woman in Andrology.” Tickets are $30 per person.
message from the program chair

It is a pleasure to welcome you to the 27th Annual Meeting of the American Society of Andrology. The Program Committee and I hope that we have provided a rich and diverse menu of topics presented by our colleagues engaging in outstanding research and for our trainees exploring the ambience of a National Meeting early in their careers. It has been a real challenge to follow our last meeting held in conjunction with the International Society of Andrology. While our Program is considerably smaller, it should be satisfying and there should be increased opportunity for the personal interactions that make such gatherings memorable. Both clinical and basic research is well-represented in this year's program. We begin with the Serono lecturer, Dr. David Botstein, introduced by Dr. David Garbers on Wednesday evening. Botstein will present his views on the scientific and medical implications of the human genome. David Botstein is Professor and Chairman, Department of Genetics, Stanford University and a member of the National Academy of Sciences. He began his theoretical contributions on linkage mapping of the human genome in 1980 by suggesting, with collaborators, that restriction fragment length polymorphisms (RFLPs) could be used to produce a linkage map of the human genome and to map the genes that cause disease in humans. His laboratory is taking a broad, interdisciplinary approach to study the biology shared by all eukaryotes. Ultimately they seek to apply this knowledge toward an understanding of human disease mechanisms. The annual American Urological Association Lecture will be presented by Dr. Ed Kim, a urologist at the University of Tennessee, who will discuss his pioneering work on Nerve Grafting During Radical Prostatectomy. The Ernst Schering Research Foundation Lecturer this year is Dr. Laurie Zoloff, San Francisco State University, who will address the timely issue of Bioethics and Hormone Replacement Therapy in the male during the Hormone Replacement Therapy in the male during the Solvay/Unimed Plenary session. Lisa Tenover will discuss Hormone Replacement Therapy in the male during the Solvay/Unimed Plenary session. Members, trainees and guests of the Society will participate in three concurrent oral sessions and two poster sessions where the latest ongoing research in and clinical relevance in Symposia on HIV Risks and Transmission (Gray, Phillips and Miller); Proteomics and Genomics in Andrological Research (Chaganti, Comerford, Garbers); Gene Defects and Male Reproduction (Capel, Imperato-McCinley, Seminara); Estrogen Effects on the Testis (Korach, Sharpe and vom Saal); and, with the support of an unrestricted educational grant from Bayer Pharmaceutical Company, a Symposium on Erectile Dysfunction organized by Dr. Jonathon Jarow, moderated by Dr. Wayne Hellstrom. Featured speakers are Drs. Arthur Burnett, George Christ and Tom Mills. The program is augmented by the Biopore sponsored lecturer, Sam Ward, University of Arizona, on "Global Analysis of Germline Gene Expression"; a Plenary Lecture by W.D. Heston, Cleveland Clinic, entitled " The "Ins & Outs of PSMA, the Evolving and Intriguing Tale of its Prostate Biology & Tumor Targeting"; the Buckeye Lecture on “Androgenic Regulation of Apoptosis in the Prostate Gland and in Prostate Cancer” presented by R. Buttyan, Mem. Sloan Kettering during the Solvay/Unimed Plenary session. Lisa Tenover will discuss Hormone Replacement Therapy in the male during the Solvay/Unimed Plenary session. Members, trainees and guests of the Society will participate in three concurrent oral sessions and two poster sessions where the latest ongoing research in the field of andrology will be presented and discussed by the meeting participants at large. ASA invites all to enjoy this full menu of scientific advances in the incomparable setting of the Pacific Northwest.

Erwin Goldberg, PhD
Chair, 2002 Program Committee

Program and Abstract Review Committee:

distinguished andrologists

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Roy O. Greep & M.C. Chang</td>
</tr>
<tr>
<td>1979</td>
<td>Thaddeus Mann</td>
</tr>
<tr>
<td>1982</td>
<td>Eugenia Roseberg</td>
</tr>
<tr>
<td>1985</td>
<td>Robert H. Foote</td>
</tr>
<tr>
<td>1988</td>
<td>Yves W. Clermont</td>
</tr>
<tr>
<td>1991</td>
<td>Philip Troen</td>
</tr>
<tr>
<td>1994</td>
<td>Richard J. Sherins</td>
</tr>
<tr>
<td>1997</td>
<td>Brian P. Setchell</td>
</tr>
<tr>
<td>2000</td>
<td>Bayard T. Storey</td>
</tr>
<tr>
<td>1977</td>
<td>Robert E. Mancini</td>
</tr>
<tr>
<td>1980</td>
<td>John MacLeod</td>
</tr>
<tr>
<td>1983</td>
<td>Kristen B.D. Elk-Nes</td>
</tr>
<tr>
<td>1986</td>
<td>Alfred D. Jost</td>
</tr>
<tr>
<td>1989</td>
<td>C. Alvin Paulsen</td>
</tr>
<tr>
<td>1992</td>
<td>C. Wayne Bardin</td>
</tr>
<tr>
<td>1995</td>
<td>Rupert P. Amann</td>
</tr>
<tr>
<td>1998</td>
<td>Ryuizo Yanagimachi</td>
</tr>
<tr>
<td>2001</td>
<td>Frank French</td>
</tr>
</tbody>
</table>

The Distinguished Andrologist Award is sponsored by the American Society of Andrology.
Dr. Waites has over 200 publications comprising invited reviews, invited to Geneva, Switzerland as Consultant and Staff Member. Dr. Waites' research also included studies at the British, French Human Reproduction (HRP).

Dr. Botstein's research has centered on genetics, especially the Program of Research, Development and Research Training in the scrotum and thermoregulation; and antifertility applications for the World Health Organization (WHO). He then became the Sydney, Australia; and Professor and Chairman of the Department of Genetics, Stanford University School of Medicine.

Dr. Botstein's research has centered on genetics, especially the use of genetic methods to understand biological functions. The bacteriophage P22 was the focus of his earliest research, which included studies of DNA replication, recombination, head assembly and DNA maturation. Dr. Botstein also contributed to understanding of the regulation and evolution of temperate bacteriophages. In the early 1970's Dr. Botstein turned to budding yeast (Saccharomyces cerevisiae) and devised novel genetic methods to study the functions of the actin and tubulin cytoskeletons. Other scientific interests of the Botstein laboratory include protein secretion (both in bacteria and yeast) and the use of localized random mutagenesis technologies to understand protein structure/function relationships. Finally, Dr. Botstein began his theoretical contributions on linkage mapping of the human genome beginning in 1980 by suggesting, with collaborators, that restriction fragment length polymorphisms (RFLPs) could be used to produce a linkage map of the human genome and to map the genes that cause disease in humans. Recent research activities include studies of yeast genetics, genomics and cell biology including the development (with J. Michael Cherry) of the Saccharomyces Genome Database; and (with P. O. Brown) the development of DNA microarray technology and analysis methods and their application to classifying and understanding human cancers.

Dr. Botstein was elected to the U.S. National Academy of Sciences in 1981 and to the Institute of Medicine in 1993. He has won several awards, notably the Eli Lilly Award in Microbiology (1978), the Genetics Society of America Medal (1988) and the Allen Award of the American Society of Human Genetics (1989). He served on many policy-making and peer-review committees, most recently the NAS/NRC study on the Human Genome Project (1987-88), the NIH Program Advisory Panel on the Human Genome (1989-90) and the Advisory Council of the National Center for Human Genome Research (1990-1995).

Serono Lectureship Recipients

<table>
<thead>
<tr>
<th>Year</th>
<th>Lectureship Recipient(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>C. Alvin Paulsen</td>
</tr>
<tr>
<td>1981</td>
<td>Pierre Soupart</td>
</tr>
<tr>
<td>1982</td>
<td>Kevin J. Catt & Maria L. Dufau</td>
</tr>
<tr>
<td>1983</td>
<td>J. Michael Bedford</td>
</tr>
<tr>
<td>1984</td>
<td>C. Wayne Bardin</td>
</tr>
<tr>
<td>1985</td>
<td>David M. De Kretser</td>
</tr>
<tr>
<td>1986</td>
<td>Ronald S. S werdoff</td>
</tr>
<tr>
<td>1987</td>
<td>Roger V. Short</td>
</tr>
<tr>
<td>1988</td>
<td>Roger Guillemin</td>
</tr>
<tr>
<td>1989</td>
<td>Frank S. French</td>
</tr>
<tr>
<td>1990</td>
<td>David C. Page</td>
</tr>
<tr>
<td>1991</td>
<td>Tony M. Plant</td>
</tr>
<tr>
<td>1992</td>
<td>Yves Clermont</td>
</tr>
<tr>
<td>1993</td>
<td>Leroy Hood</td>
</tr>
<tr>
<td>1994</td>
<td>Michael D. Griswold</td>
</tr>
<tr>
<td>1995</td>
<td>Marie-Claire Orgebin-Crist</td>
</tr>
<tr>
<td>1996</td>
<td>Norman B. Hecht</td>
</tr>
<tr>
<td>1997</td>
<td>Patrick C. Walsh</td>
</tr>
<tr>
<td>1998</td>
<td>Junrrien Dean</td>
</tr>
<tr>
<td>1999</td>
<td>Neal First</td>
</tr>
<tr>
<td>2000</td>
<td>Bert O'Malley</td>
</tr>
<tr>
<td>2001</td>
<td>John D. Gearhart</td>
</tr>
</tbody>
</table>

The Serono Lectureship is sponsored by Serono Laboratories, Inc.

Dr. Geoffrey Malcolm Hasting Waites is the recipient of the 2002 Distinguished Andrologist Award. Emeritus Professor Waites has had a highly distinguished career in Andrology over the past 40 years. Dr. Waites graduated from the Universities of Birmingham and Cambridge, UK with BSc, MA, PhD, and ScD (Doctor of Science) degrees. His academic career has included positions as: Associate Professor of Physiology, University of Sydney, Australia; and Professor & Chairman, Physiology & Biochemistry and Dean, University of Reading, UK.

Dr. Waites' research also included studies at the British, French and Australian Government Science Institutes. In 1983, he was invited to Geneva, Switzerland as Consultant and Staff Member, for the World Health Organization (WHO). He then became the appointed manager of the WHO Male Task Force of the Special Program of Research, Development and Research Training in Human Reproduction (HRP).

Dr. Waites has over 200 publications comprising invited reviews, chapters in books, and research papers on: cardiovascular and reproductive physiology; blood flow; endocrine and metabolic control of the testis and the blood-testis barrier; the epididymis; the scrotum and thermoregulation; and antifertility applications (chlorinated sugars). Also, his contributions include clinical and scientific publications reporting WHO-supported studies and clinical trials and WHO technical manuals and policy reports.

Dr. Waites' principal accomplishments include: research contributions into the physiology of the blood-testis barrier; the scientific coordination of the multi-centre WHO trials establishing the contraceptive efficacy of male hormonal methods; development of the new universal standard for semen analysis the WHO Laboratory Manual for Semen Analysis and Cervical Mucus Interaction (2nd -4th editions); and establishment of WHO andrology workshops in developing countries (China, Chile, Indonesia, Kenya, Morocco, Vietnam,) and in Russia. Dr. Waites was also a founding member of the British Andrology Society and the founder member and President of the International Society of Andrology (1993-1997). Dr. Waites' colleagues were most impressed with his dedication to improving the standards of andrology on a global basis. "Dr. Waites has uniquely been able to translate his accomplishments as a researcher into programmatic developments that have markedly enhanced the development of andrology over the past few decades". "Very few andrologists have had such a tremendous scientific impact worldwide". "Geoff has acted as a mentor for andrology in emerging countries, and for this he is revered around the world". For his global impact in the field of Andrology, the American Society of Andrology is honored to award Dr. Waites the 2002 Distinguished Andrologist Award.
Terry T. Turner, PhD is recipient of the 2002 Distinguished Service Award. Dr. Turner is currently a Professor of Urology and Cell Biology at the University of Virginia School of Medicine. He received his PhD from the University of Georgia in 1974 with Dr. Doyle Johnson. His postdoctoral studies were at the Department of OB/GYN at University of Texas Health Science Center at San Antonio with Dr. Carl Pauerstein. Since that time, Dr. Turner has been at UVA, including some early work with Dr. Stuart Howards who adapted in vivo micro puncture techniques for study of epididymal and seminiferous tubule function. His internationally recognized work has been funded by the NICHD and the NIDDK. This work has been primarily in the areas of: 1) epididymal epithelium regulation and the role of this unique microenvironment on sperm maturation; and 2) testicular mechanisms of vascular pathology and oxidative stress leading to disruption of spermatogenesis. These studies have resulted in over 100 publications to date.

In addition to his scholarly activities, Dr. Turner has played a pivotal role in the American Society of Andrology since its inception. This includes being a charter member of the society and attending every meeting since inception! Dr. Turner's list of activities in the society include: member of the Executive Council 1979-1982; Chair, Student Affairs Committee, 1981-1984; Chair, Awards Committee, 1986-1987; Chair, Nominating Committee, 1992; Chair, 1995 Program Committee, 1993-1995; Chair, Long Range Planning Committee, 1996; Secretary, 1988-1992; Editorial Board, Journal of Andrology, 1993-1997; Vice-President, 1996; President, 1997; Immediate Past President, 1998; Reviewer of manuscript for Journal of Andrology, 1980-present; Co-Chair of ASA-sponsored conference, the Third International Conference on the Epididymis, Charlottesville, VA, May 29-June 1, 2002.

Dr. Turner's valuable role in our society is reflected in the letters of nomination sent on his behalf. "Terry represents the 'con-science' of our society and has always been one of its strongest supporters". "Terry has served the society in many ways and selflessly. I can not think of anyone that would merit this distinction more". "Terry's enthusiasm for the field of Andrology, as well as his great stories and sense of humor were a major reason that I joined the ASA as a trainee. He has helped shaped a culture of scientific openness and fun that is so unique to our organization".

Because Dr. Terry Turner has served the American Society of Andrology with distinction and has worked for many years to create an organization we are all proud of, we are honored to award him with the 2002 Distinguished Service Award.

Distinguished Service Award Recipients

<table>
<thead>
<tr>
<th>Year</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>C. Alvin Paulsen</td>
</tr>
<tr>
<td>1995</td>
<td>Andrzej Bartke</td>
</tr>
<tr>
<td>1996</td>
<td>Philip Troen</td>
</tr>
<tr>
<td>1997</td>
<td>Marie-Claire Orgebin-Crist</td>
</tr>
<tr>
<td>1998</td>
<td>Rupert P. Amann</td>
</tr>
<tr>
<td>1999</td>
<td>David W. Hamilton</td>
</tr>
<tr>
<td>2000</td>
<td>Bernard Robaire</td>
</tr>
<tr>
<td>2001</td>
<td>Gall S. Prins</td>
</tr>
</tbody>
</table>

The Distinguished Service Award is sponsored by the Genetics & IVF Institute
Christopher was born in a small village in Wales. His interest in biology led him to undertake a BSc in Zoology at Swansea University where he thoroughly enjoyed the student lifestyle and played rugby at every opportunity. Following a short period as a secondary school teacher, which he found less interesting than hoped, he decided to pursue his interest in human reproduction. His PhD supervisor was Jack Cohen and during this challenging educational 3 year period, he realized the importance of experimental design and tolerance of supervisors. At 27 and feeling like an eternal student, he realized it was time to earn some money, so he secured a position with Ian Cooke in Sheffield. The initial post was as an embryologist in a natural cycle IVF program which was thought by many in the human reproductive arena to be a lot of hard work for minimal reward i.e. low live birth rate per treatment cycle started. Fertilization failure was a significant issue (only one egg!) which stimulated his interest in sperm function and led to the development of the male reproduction research program. During this period, he became interested in teaching semen analysis and couldn't understand why most people were unable to accurately count sperm. This provided the impetus to develop structured training courses, first in the UK as part of the British Andrology Society, and then throughout Europe, as part of ESHRE. Scientifically, he was fascinated by the transport of sperm through, and interaction with, the human female reproductive. Logically these investigations included interaction of selected sperm populations with the egg vestments, an area that remains his main focus. Christopher moved back to Birmingham in 1997 to direct the assisted conception centre and become Professor of Reproductive Medicine at Birmingham University. Interestingly, in the current climate of single embryo transfer it is possible that the hours spent investigating natural cycle IVF may turn out to be a vital learning experience.

Christopher is a firm believer in interdisciplinary research and always trying to employ people who have complementary clinical and scientific skills to himself. Additionally, he is very keen to nurture young scientists, encouraging them, when appropriate, to develop into independent investigators.

His professional activities include: Associate Editor of Human Reproduction; Editorial board member for Journal of Andrology and Editorial board member for Human Fertility.

Young Andrologist Award Recipients

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>L.J.D. Zaneveld</td>
</tr>
<tr>
<td>1984</td>
<td>Lonnie D. Russell</td>
</tr>
<tr>
<td>1986</td>
<td>Stephen J. Winters</td>
</tr>
<tr>
<td>1988</td>
<td>Larry Johnson</td>
</tr>
<tr>
<td>1990</td>
<td>Luis Rodriguez-Rigau</td>
</tr>
<tr>
<td>1992</td>
<td>Gary R. Klinefelter</td>
</tr>
<tr>
<td>1994</td>
<td>Wayne J.G. Hellstrom</td>
</tr>
<tr>
<td>1996</td>
<td>Paul S. Cooke</td>
</tr>
<tr>
<td>1998</td>
<td>William R. Kelce</td>
</tr>
<tr>
<td>2000</td>
<td>Matthew P. Hardy</td>
</tr>
</tbody>
</table>

2001 Jacquetta Trasler

The Young Andrologist Award is sponsored by the Texas Institute for Reproductive Medicine and Endocrinology, P.A.

New Investigator Award Recipients

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Thomas T. Tarter</td>
</tr>
<tr>
<td>1985</td>
<td>Randall S. Zane</td>
</tr>
<tr>
<td>1987</td>
<td>Peter Grosser</td>
</tr>
<tr>
<td>1989</td>
<td>Tracy L. Rankin</td>
</tr>
<tr>
<td>1991</td>
<td>Robert Viger</td>
</tr>
<tr>
<td>1993</td>
<td>Michael A. Palladino</td>
</tr>
<tr>
<td>1995</td>
<td>Mehdi A. Akhondi</td>
</tr>
<tr>
<td>1997</td>
<td>Loren D. Walensky</td>
</tr>
<tr>
<td>1999</td>
<td>Jacques J. Tremblay</td>
</tr>
<tr>
<td>2001</td>
<td>Alexander T.H. Wu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>Peter S. Albertson</td>
</tr>
<tr>
<td>1986</td>
<td>Mark A. Hadley</td>
</tr>
<tr>
<td>1988</td>
<td>Stuart E. Ravnik</td>
</tr>
<tr>
<td>1990</td>
<td>Donna O. Bunch</td>
</tr>
<tr>
<td>1992</td>
<td>John Kirby</td>
</tr>
<tr>
<td>1994</td>
<td>Linda R. Johnson</td>
</tr>
<tr>
<td>1996</td>
<td>Wei Gu</td>
</tr>
<tr>
<td>1998</td>
<td>Dolores D. Mruk</td>
</tr>
<tr>
<td>2000</td>
<td>Jeffrey J. Lysiak</td>
</tr>
</tbody>
</table>

The New Investigator Award is sponsored by the West Michigan Reproductive Institute, P.C.

New Investigator Award

The New Investigator Award is given to the ASA trainee member with the best abstract and research presentation at the Annual Meeting. The award encourages trainee members to submit and present their best work and contribute to the scientific excellence of the Society.

The recipient of the 2002 New Investigator Award will be announced during ASA's Annual Business Meeting, to be held Saturday, April 27, 2002 at 12:15 pm.
The American Society of Andrology

wishes to thank the following organizations for their generous support of the 2002 Annual Meeting, Postgraduate Course and Laboratory Workshop

Gold Club-a minimum of $10,000 contribution to an ASA endowment fund

Buckeye Urology and Andrology, Inc.

Silver Club-a minimum of $5,000 contribution to an ASA endowment fund

West Michigan Reproductive Institute, P.C.

Sustaining Sponsor-a minimum of $500 contribution to ASA for 5 years or more

American Urological Association
California Cryobank
Genetics & IVF Institute
Hamilton Thorne Research
Serono Laboratories
Texas Institute for Reproductive Medicine and Endocrinology

Sponsors

Bayer Pharmaceutical Division
BIOPORE, Inc.
Ernst Schering Research Foundation
Fertility Solutions, Inc.
Glaxo Smith Kline Research & Development
Lilly ICOS
Merck & Co., Inc.

Sigma-Tau Consumer Products, a division of Sigma-Tau Pharmaceuticals
UniMed Pharmaceuticals Inc, a Solvay Pharmaceuticals, Inc. Company

The American Society of Andrology gratefully acknowledges these contributors to the various ASA Endowment or Asset Funds for the past year:

$1,000 - $4,999
Gail Prins, PhD
University of Minnesota

$250-$999
Frank French
Bayard Storey, PhD
J. Lisa Tenover, MD, PhD

$100-$249
Christopher De Jonge, PhD
Robert Foote, PhD,MS
Matthew Hardy, PhD
Alan Menge, PhD
Charles Muller, PhD
Jon Pryor, MD
Carlos Suarez-Quian, PhD

$1-$99
Andrzej Bartke, PhD
Sally Perreault-Damey, PhD
Edward Eddy, PhD
David Hamilton, PhD
Gabor Huszar, MD
Masaichi Kimura, MD,PhD
Marvin Meistrich, PhD
Omar Fernandez-Sandoval, MD
Susanna Tapia-Serrano
Richard Sherins, MD
Hiroki Shima, MD,PhD
Hitoshi Takeshima, MD
Christina Wang, MD
Nancy Warner, MD
Jan Wolski, MD

10 • 27th annual meeting of the american society of andrology
Following this program the participant should be able to:

• Relate the technological advances of the human genome project to clinical importance
• Understand the effects and consequences of hormone replacement therapy in the male
• Understand the role of genes and genetic defects in male reproduction
• Be aware of risks and transmission of HIV
• Recognize the toxic effects of cyclophosphamide exposure
• Assess the procedure of nerve grafting during radical prostatectomy
• Describe the role of genetics and gene therapy in prostate cancer
• Understand the latest developments in the area of erectile dysfunction
• Recognize estrogen effects on the testis

The University of Minnesota designates this continuing medical education activity for 16.5 hours in category 1 credit toward the AMA Physician’s Recognition Award. Each physician should claim only those hours of credit actually spent in the educational activity.

Following the program the participant should be able to:

• Describe the clinical epidemiology of prostate cancer in different populations
• Identify the role of estrogens in the development and promotion of prostate disease as well as new research and treatments for androgen-refractory prostate cancer
• Evaluate how basic science advances in genetics and endocrinology will influence the clinical management of prostate cancer
• Describe the reproductive consequences (e.g., infertility, birth defects) of the father’s exposure to drugs and chemicals
• Understand the role of cancer susceptibility genes and environmental exposures in the pathophysiology of testicular cancer
• Describe the role of genetic testing and counselling in clinical andrology

The University of Minnesota designates this continuing medical education activity for 7.0 hours in category 1 credit toward the AMA Physician’s Recognition Award. Each physician should claim only those hours of credit actually spent in the educational activity.

Both the Annual Meeting and Postgraduate Course have been planned and implemented in accordance with the Essentials and Standards of the Accreditation Council for Continuing Medical Education through the joint sponsorship of the University of Minnesota and the American Society of Andrology. The University of Minnesota is accredited by the ACCME to provide continuing medical education for physicians.
Wednesday, April 24, 2002

Andrology Laboratory Workshop
The Andrology Laboratory of the Future:
Impact of the Genomic and Proteomic Revolutions
WEST ROOM

8:00 am Introduction
Gregory S. Kopf, Ph.D., Wyeth-Ayerst Research
Pasquale Patrizio, M.D., Univ. of Pennsylvania

8:15 am Session I: Application of Gene Technology to the Andrology Lab of the Future
Michael Griswold, Ph.D., Washington State Univ.

9:00 am Diagnostic Markers for the Future Andrology Laboratory coming from Basic Science Research
Norman B. Hecht, Ph.D., Univ. of Pennsylvania

9:45 am Refreshment Break

10:15 am Session II: Genetics of Male Infertility
Renee Reijo, Ph.D., Univ. of California, San Francisco

11:00 am Automated Instrumentation and the Detection of Sperm DNA Integrity for Diagnosis and Prognosis of Male Infertility
Donald P. Evenson, Ph.D., So. Dakota State Univ.

12:00 pm General Discussion

12:15 pm Lunch

1:30 pm Session III: Calcium Signaling Pathways During Fertilization: How They Work and How They Go Astray
Harvey M. Florman, Ph.D., Univ. of Massachusetts

2:15 pm Defining a Molecular View of Fertilization: Mapping the Sperm Cell Surface

3:00 pm Refreshment Break

3:30 pm ProteinChip® Technology: Pioneering Clinical Proteomics for Predictive Medicine
Deborah Diamond, Ph.D., Ciphergen Biosystems, Inc

4:15 pm General Discussion

4:45 pm Summary
Gregory S. Kopf, Ph.D. Pasquale Patrizio, M.D., and Charles Muller, Ph.D.

5:30 pm Welcome and Opening Remarks
GRAND BALLROOM C

5:45 pm Distinguished Andrologist Award
GRAND BALLROOM C

6:00 pm Serono Lecture
GRAND BALLROOM C
• Of Genes and Genomes
David Botstein, Stanford University
introduced by David Garbers

Thursday, April 25, 2002

8:00 am Solvay/Unimed Pharmaceuticals Lecture
GRAND BALLROOM C
Chair: Rupert Amann
• Androgen Therapy in the Older Man-Where Are We Now and Where Are We Going?
Lisa Tenover, Emory University

8:55 am Distinguished Service Award

9:05 am Biopore Lecture
GRAND BALLROOM C
Chair: Mary Ann Handel
• Global Analysis of Germline Gene Expression
Sam Ward, University of Arizona

10:00 am Coffee Break and Exhibits
GRAND BALLROOM B & C

10:30 am Concurrent Oral Sessions I, II, III

SESSION I: Basic and Clinical Aspects of Male Sexual Dysfunction
GRAND BALLROOM C
Chairs: Arthur Burnett and Ron Lewis

1. The effect of as-needed tadalafil treatment of erectile dysfunction in men with diabetes
H. Padma-Nathan, G. Anglin, A. Yu, S.J. Whitaker

2. A single oral dose of vardenafil had no acute effect on sperm motility in healthy males
T. Taylor, R.J. Bauer, G. Rohde, F. Kiesewetter

3. Endothelial nitric oxide synthase gene transfer restores nitric oxide production and erectile function in diabetes

4. Long term efficacy of sildenafil citrate following radical prostatectomy (RP): 3-year follow-up

5. Long term efficacy and compliance of intracorporeal (IC) penile injections in patients with erectile dysfunction (ED) following radical prostatectomy
R. Raina, M.M. Lakin, R.A. Saleh, A. Agarwal, C.D. Zippe

6. A comparison of long term penile damage after definitive prostate radiation therapy (RT) vs. radical retropubic prostatectomy (RPP) in men with post treatment ED: Is there a difference?
A. McCullough, N. Mani, S. Telegrafi
SESSION II: Hormonal Control and Cellular Aspects of Spermatogenesis
WEST ROOM A
Chairs: Debbie O'Brien and Stu Ravnik

7. Contraceptive efficacy of a depot androgen and progestin combination in men

8. Protein kinase a (PKA) enhancement of gata-4-mediated gene expression: A link with hormone-activated cell signaling
J.J. Tremblay, F. Hamel, R.S. Viger

9. Use of the yeast three-hybrid system to elucidate ternary protein interactions during meiosis
C.A. Kersten, S.E. Ravnik

10. Activation of the mitochondria-dependent apoptotic pathway in heat-induced testicular germ cell apoptosis in fas ligand-defective mice
A.S. Hikim, H.H. Lue, S. Rodriguez, P.H. Yen, C. Wang, R.S. Swerdloff

11. Expression and inhibition of recombinant GAPDS, the sperm-specific isoform of glyceraldehyde 3-phosphate dehydrogenase
WeiDong Qu, P.L. Magyar, K. Miki, M. Goto, D.A. O'Brien

12. TPX-1 Binding studies of the mouse outer dense fiber protein TPX-1
D.M. Hickox, D.M. de Kretser, M.K. O-Bryan

SESSION III: Basic and Clinical Aspects of Sperm Maturation in the Epididymis
WEST ROOM B
Chairs: Matt Hardy and Patricio Morales

13. PC2-The cystatin-related epididymal spermatogenic (CRES) protein is an inhibitor of the prohormone processing serine protease PC2
G.A. Cornwall, A. Cameron, I. Lindberg, D. Hardy, N. Hsia

14. Potential role of a Na+/HCO3- cotransporter in mouse sperm capacitation

15. PDC-109 enables epididymal bull sperm to bind to oviductal epithelium TM
T. Gwathmey, G.G. Ignotz, S. Suarez

16. The nicotinic acetylcholine receptor is involved in the ZP3-initiated acrosome reaction of human sperm
C.M. J. Bray, J.-H. Son, S. Meizel

17. Sperm proteasomes are involved in human fertilization
P Morales, M. Kong, C. Pasten, E. Pizarro

18. Injection of sperm nuclear halos into oocytes results in normal paternal pronuclei chromosomes
Mohar, M.A. Szczygiel, W.S. Ward
Symposium II: Proteomics/Genomics: Will This Revolutionize Andrological Research?
GRAND BALLROOM C
Chair: John Herr
- Genetics and Biology of Adult Male Germ Cell Tumors
 Raju S.K. Chaganti, Memorial Sloan-Kettering
- Modeling Human Disease Through Transgenesis
 Sarah Comerford, UTswMS & HHMI
- How to Find Cellular Proteins that Sense the Environment
 David Garbers, UTswMS & HHMI

Laboratory Science Lunch
CIRRUS BALLROOM

Symposium III: Do Gene Defects Impact Male Reproduction: If So, How?
GRAND BALLROOM C
Chair: Norman Hecht
- The Battle of the Sexes: Sry and the Control of Testis Organogenesis
- Natural Androgens: Lessons from Human Genetic Models
 J. Imperato-McGinley, Cornell University
- Genetic Defects in Male Reproduction
 Stephanie Seminara, Harvard University

Break

Plenary Lecture
GRAND BALLROOM C
Chair: Gail Prins
- The Ins & Outs of PSMA, the Evolving and Intriguing Tale of its Prostate Biology & Tumor Targeting
 W.D. Heston, Cleveland Clinic

Schering Lecture
GRAND BALLROOM C
Chair: Bernard Robaire
- Bioethics and Stem Cell Research
 Laurie Zoloff, San Francisco State Univ.

Poster Session II
GRAND BALLROOM A & B

Banquet
GRAND BALLROOM C

Saturday, April 27, 2002

Latin American Lecture
GRAND BALLROOM C
Chair: Carlos Suarez-Quin
- Phenotypes of Sperm Pathology: A Journey from Descriptive Morphology to Molecular Genetics
 Hector Chemes, Buenos Aires Children's Hospital

Symposium IV: Are there Estrogen Effects on the Testis?
GRAND BALLROOM C
Chair: Rex Hess
- Uncovering a Role for Estrogen Receptors in Male Reproduction
 Ken Korach; NIEHS
- Estrogen Effects on the Developing Testis: Direct or Indirect Effects? Richard Sharpe, Edinburgh
- Developmental Effects of Estrogenic Chemicals
 Fred vom Saal, Univ. Missouri-Columbia

Break

Symposium V: The Molecular Basis of Erectile Physiology: From Bench to Bedside
GRAND BALLROOM C
Moderator: Wayne Hellstrom, Tulane University
(Sponsored by an unrestricted educational grant from the Bayer Pharmaceutical Division)
- Nitric-Oxide-Mediated Penile Erection:
 Neuroregulatory and Blood Flow-Dependent Mechanisms
 Arthur Burnett, Johns Hopkins Hospital
- Channels as Molecular Targets for Improved Therapy of Erectile Dysfunction
 George Christ, Albert Einstein College of Medicine
- Inhibition of Tonic Contraction: A New Way to Approach ED?
 Thomas Mills, Medical College of Georgia

Business Meeting
GRAND BALLROOM C

Conclusion of Annual Meeting

Postgraduate Course
Saturday, April 27, 2002
Andrology: Genes, Hormones & Environment
2:15 pm Introduction
GRAND BALLROOM C
Jacquetta Traster, Course Chair

Session 1- Prostate Cancer: Update and Diagnostics (including gene-based)
2:30 pm Epidemiology of Prostate Cancer
Janet L. Stanford, Fred Hutchinson Cancer Research Center

Refreshment Break

Androgen Refractory Prostate Cancer—New Insights, New Treatments
Martin Gleave, Univ. of British Columbia

Prostate Cancer: How Basic Science Advances Will Impact Clinical Management
Paul Lange, University of Washington

Discussion -Two 5-10 minute viewpoints (2 speakers), Discussion (all speakers)

Dinner
Session 2 - Infertility and Testicular Cancer: Genetics, Environment, Counseling and Testing

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:40 am</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>9:00 am</td>
<td>Testicular Cancer: Environmental Origins vs. Cancer Susceptibility Genes</td>
</tr>
<tr>
<td></td>
<td>Richard Sharpe, University of Edinburgh</td>
</tr>
<tr>
<td>9:35 am</td>
<td>Genetic Testing and Counseling in Andrology (Genes, Environmental Exposures)</td>
</tr>
<tr>
<td></td>
<td>Pasquale Patrizio, Univ. of Pennsylvania</td>
</tr>
<tr>
<td>10:10 am</td>
<td>Discussion - Two 5-10 minute viewpoints (2 speakers) Discussion (all speakers)</td>
</tr>
<tr>
<td>10:45 am</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Future Meetings

28th Annual Meeting of the American Society of Andrology

Saturday, March 29-Tuesday, April 1, 2003

Sheraton Crescent Hotel

Phoenix, Arizona USA

For additional information on all meetings, contact:

American Society of Andrology

2950 Buskirk Avenue, Suite 170

Walnut Creek, CA 94596

Phone (925) 472-5910

Fax (925) 472-5901

Website www.andrologysociety.com
19	CHARACTERIZATION OF UNIQUE TRANSCRIPTION OF GERM CELLS FROM THE MOUSE TESTIS WITH THE USE OF AFFYMETRIX GENECHIP® ARRAYS / D.J. McLean, D.J. McLean, P.J. Friel, J.R. McCarre, M.D. Griswold
20	AN INITIAL PROFILING OF MESSENGER RNA EXPRESSION FROM MICRODISSECTED STAGE-SPECIFIC TUBULES BY OLIGONUCLEOTIDE ARRAY / T.B. Guo, J. Toppari, W.A. Saleme
22	THE TFIH BASAL TRANSCRIPTION COMPLEX IS ABUNDANTLY EXPRESSED DURING MEIOSIS IN THE MOUSE TESTIS / S.E. Ravnik, E.A. Whitmire, W.L. Boston, P.L. Frisbie
23	CKS2 IS UPREGULATED DURING MEIOSIS AND BINDS THE MEIOTIC ISOFORM, CDK2fl / E.N. Attaya, S.E. Ravnik
24	CHARACTERIZATION OF THE ROLE THAT RARa PLAYS IN SPERMATOGENESIS BY EXAMINATION OF THE RARa KNOCKOUT MICE / T.J. Doyle, K.W. Braun, D. McLean, P. Shane, M.D. Griswold, K.H. Kim
25	INHIBITION OF SPERM PRODUCTION IN MICE BY ANNEXIN V MICROINJECTED INTO SEMINIFEROUS TUBULES: A POSSIBLE ETIOLOGY OF PHAGOCYTIC CLEARANCE OF APOPTOTIC SPERMATOGENIC CELLS AND MALE INFERTILITY / Y. Maeda, A. Shiratsuchi, M. Namiki, Y. Nakanishi
26	SPERMATOGENESIS AFTER ORCHIECTOMY ALONE TREATMENT FOR NON-SEMINOMA STAGE I TESTICULAR CANCER / V. Mamaladze
27	RESTORATION OF SPERMATOGENESIS AND FERTILITY IN AZOOSPERMIC MUTANT MICE BY SUPPRESSION AND REELEVATION OF TESTOSTERONE FOLLOWED BY ICSI / A. Tohda, K. Matsumiya, T. Okuno, M. Okabe, H. Kishikawa, A. Tsujimura, K. Dohmae, Akuyama, Y. Nishimune
28	SEMINIFEROUS EPITHELIUM CYCLE LENGTH IN Bolomys lasiurus (RODENTIA, MURIDAE) C.D. de Lima Nessral, L.R. FranA
29	IDENTIFICATION OF RETINOIC ACID INDUCED GENES IN MOUSE TESTIS BY cDNA MICROARRAY ANALYSIS A.J. Oudes, J.C. Rockett, D.J. Dix, K.H. Kim
30	CYSTATIN TE-1, A CYSTATIN-RELATED GENE EXPRESSED IN THE TESTIS AND EPIDIDYMIS Y. Li, M.O. Robinson, P.J. Friel, D.J. McLean, M.D. Griswold
31	INVOLVEMENT OF GGA IN THE LYSOSOMAL TRANSPORT OF PROSAPOSIN; A PROTEIN EXPRESSED IN SERTOLI CELL / S. Lefrancois, A.J. Hassan, C. Morales
32	RAB GTpases ARE KEY PLAYERS IN TIGHT (TJ) AND ANCHORING JUNCTION (AJ) DYNAMICS IN THE TESTIS A.S. Nga Lau, D.D. Mruk
33	SERTOLI CELL NUMBER INCREASES MARKEDLY DURING INFANCY IN THE RHESUS MONKEY, BUT TO A LESSER EXTENT THAN THAT DURING PUBERTY IN THIS SPECIES / D.R. Simorangkir, T.M. Plant, G.R. Marshall
34	A NEW PROCEDURE TO PURIFY ADULT RAT AND MOUSE LEYDIG CELLS / A. Salva, G.R. Klinefelter, M.P. Hardy
35	ISOLATION AND FUNCTION OF ADULT RAT SERTOLI CELLS / M. Anway, J. Folmer, B.R. Zirkin
36	CYCLINS EXPRESSION IN SOMATIC CELLS OF THE TESTIS IN NEONATAL WISTAR RATS F.M. Pereira, G.C. Bregunci, G.D. Cassali, R.A. Hess, L.R. FranA
38	TUMOR NECROSIS FACTOR-α INDUCES NEUTROPHIL RECRUITMENT TO TESTICULAR VENULES: CHARACTERIZATION OF SIGNALING PATHWAYS / J..L. Lysiak, T.T. Turner
39	TESTOSTERONE INHIBITS PRODUCTION OF 25-HYDROXYCHOLESTEROL IN TESTICULAR MACROPHAGES Y.O. Lukyanenko, J.C. Hutson
40 PERCUTANEOUS NEEDLE TESTICULAR BIOPSY IN INFERTILE MEN
J.K. Wolski, P. Kluge, B. Biarda, K. Koziol, P. Lewandowski

41 SEASONALITY OF CRYPTORCHIDISM AND HYPOSPADIAS IN GREECE: EPIDEMIOLOGICAL RELATIONSHIPS / M. Charalampos, D. Demetriades, S. Antypas, N. Sofritakis

42 PROGESTERONE RECEPTOR EXPRESSION, LOCALIZATION, AND ACTIVITY IN RAT TESTES
Y.H. Lue, C. Wang, A.P. Sinha Hikim, C.M. Yamamoto, A. Leung, V. Atienza, M. Diaz-Romero, R.S. Swerdloff

43 THE EFFECTS OF REPRODUCTIVE HORMONES ON COLOCALIZATION OF CORTACTIN WITH F-ACTIN IN ISOLATED RAT SERTOLI CELLS / K.M. Wolski, J. Hushen, D.F. Cameron

44 POTENTIAL ESTROGEN REGULATION OF HENSIN, AN EPITHELIAL TERMINAL DIFFERENTIATION GENE IN THE MALE REPRODUCTIVE TRACT / Q. Zhou, Q. Al-Awqati, R. Nie, K. Carnes, D. Lubahn, R.A. Hess

45 THE INITIATOR CASPASE 9 AND THE EXECUTIONER CASPASES 3 AND 6 ARE INVOLVED IN GERM CELL APOPTOSIS FOLLOWING GONADOTROPIN DEPRIVATION IN RATS
G. Palomeno, A.P. Sinha Hikim, Y.H. Lue, V. Atienza, C. Wang, R.S. Swerdloff

46 ANDROGEN RECEPTORS WITH A PATHOLOGICALLY EXPANDED POLYGLUTAMINE TRACT FORM AGGREGATES WHICH ALTER NEURITE TRANSPORT IN MOTONEURONAL CELLS
L. Martini, S. Simeoni, F. Piccioni, P. Pozzi, I. Andriola, V. Poletti

47 A PHARMACOKINETIC STUDY OF ORAL TESTOSTERONE UDECANOATE (ORG 538)

48 CAN AGE-RELATED DECREASES IN LEYDIG CELL TESTOSTERONE PRODUCTION BE RESTORED WITH LH?
H. Chen, M.P. Hardy, B.R. Zirkin

49 A MORMPHOMETRIC ANALYSIS OF TESTICULAR FUNCTION IN SENESCENCE ACCELERATED MICE
N. Manabe, Y. Akiyama, M. Sugimoto, M. Kiso, K. Komatsu, M. Shimabe, H. Miyamoto

50 DETECTION OF PARTIAL ANDROGEN DEFICIENCY IN AGING MALES AND ITS IMPACT. PRELIMINARY REPORT

51 CALORIC RESTRICTION AFFECTS GENE EXPRESSION IN THE EPIDIDYMIS OF THE BROWN NORWAY RAT
K. Jervis, B. Robaire

53 IN UTERO EXPOSURE TO PERSISTENT ORGANIC POLLUTANTS (POPS) AFFECTS GENE EXPRESSION IN THE FETAL TESTIS / A. Adeeko, D. Li, J.M. Trasler, B.F. Hales, B. Robaire

54 GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS / D. Tarka, J.D. Suarez, N.L. Roberts, J.M. Rogers, M.P. Hardy, G.R. Klinefelter

55 IN UTERO EXPOSURE TO TRIBUTYL TIN ALTERS CELLULAR JUNCTIONS IN ADULT RAT VENTRAL PROSTATE
J. Barthelemy, D.G. Cyr

56 TESTOSTERONE LEVELS IN MALE PESTICIDE APPLICATORS AND THE SEX OF THEIR CHILDREN
S.E. Holland, V.F. Garry, S.M. Schrader, J.S. Kesner, E.A. Knecht

57 SPERM MOTILITY IN HSF1 KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS
L.F. Strader, S.D. Perreault, J.C. Luft, D.J. Dix

58 ABNORMAL SPERM MORPHOLOGY AND OFFSPRING SEX RATIO IN MALE FUNGICIDE APPLICATORS
S.M. Schrader, T.W. Turner

59 OFF-SITE SEMEN ANALYSIS IN MEN INVESTIGATED FOR REPRODUCTIVE TOXICITY: PRESERVATION OF SPERM SHAPE AND THE CHROMATIN ANILINE BLUE STAINING PATTERN / C. Celik-Ozenci, L. Vigue, G. Huszar
POLYCHLORINATED BIPHENYLS INDUCED ALTERATIONS OF MORPHOLOGY AND CYTOSKELETON IN MCF-7 HUMAN BREAST CANCER CELLS / S. Raychoudhury, A.F. Flowers

THE INFLUENCE OF ANTI-SPERM ANTIBODIES ON THE ACROSOME REACTION / C. Bohring, J. Skrzypek, W. Krause

HUMAN SPERM WITH SEVERELY DEFECTIVE MORPHOLOGY VARY WIDELY IN THEIR ABILITY TO PENETRATE ZONA-FREE HAMSTER EGGS / R.A. Bronson, S. Bronson, L. Oula

POSSIBLE ROLE OF INTRACELLULAR CALCIUM IN THE HEAD-TO-HEAD AGGLUTINATION OF BOAR SPERMATOZOA / H. Harayama

PROBABILITY OF SPERM WITH ACTIVATED KILLER ENZYMES TO HAVE DAMAGED MEMBRANES / U. Paasch, S. Grunewald, H.J. Glander

REACTIVE OXYGEN SPECIES INDUCE DEOXYRIBONUCLEIC ACID (DNA) DAMAGE IN EQUINE SPERM / J. Bamber, B.A. Ball

ANDROLOGICAL PARAMETER DIFFERENCES BETWEEN IDENTICAL GENOMIC BULLS / C. Lessard, J.F. Bilodeau, J.L. Bailey, P. Leclerc, R. Sullivan

BULL FERTILITY - COMMERCIAL OUTCOME DATA INAPPROPRIATE TO ESTABLISH UTILITY OF A DIAGNOSTIC TEST OF SPERM QUALITY / R. Amann, R.H. Hammerstedt

THE FATE OF BOVINE OCWTES INTERACTING IN VIVO WITH 1, 2, OR 3 SPERM; IMPLICATIONS OF DATA INTERPRETATION / R.P. Amann, R. G. Saacke

EFFECT OF WEIGHT AND AEROBIC TRAINING ON STEROID HORMONES AND SEMEN PROFILES / W. H. Park, K. H. Rha, K. J. Cho, M.S. Lee

SEMEN QUALITY SCORE - A NOVEL METHOD TO PREDICT SUCCESSFUL OUTCOME IN DONOR INSEMINATION FOR COUPLES WITH MALE FACTOR INFERTILITY / P. Ranganathan, I. Bandaranayake, J. Chauhan, M. Oder, D. Nelson, A. Agarwal

LONGITUDINAL STUDY OF SEMEN QUALITY AFTER INTERMITTENT EXPOSURE TO AIR POLLUTION / J. Rubes, D. Zudova

SEASONAL VARIATION OF SEMEN PROFILES IN HEALTHY YOUNG MEN IN KOREA / K.H. Rha, W.H. Park, J.Y. Noh, S.W. Han, M.S. Lee

ASSISTED REPRODUCTION USING HAMSTER SPERMATOZOA GENERATED INTO XENOGENEIC TESTES / S. Tsabalas, Ch. Mamoulakis, A. Kaponis, D. Baltogiannis, X. Giannakopoulos, I. Miyagawa, A. Tasos, N. Sofikitis

"MAPPING" PERCUTANEOUS NEEDLE TESTICULAR BIOPSY IN NON-OBSTRUCTIVE AZOOSPERMIA / J.K. Wolski, P. Kluge, B. Biarda, K. Kozioł, P. Lewandowski
poster session 1

81 COMPARISON OF TWO DENSITY GRADIENT PREPARATIONS FOR SPERM SEPARATION FOR MEDICALLY ASSISTED CONCEPTION: EFFECT ON RECOVERY, CLEAN-UP, MOTILITY, AND MOTION PARAMETERS
W.A. Roudebush, J.A. Cano, M.H. Durrance, M.C. Holmes, M.A. Witt, S.M. Slayden, H.I. Kort

82 CRYOPRESERVED SPERM FROM TESTICULAR SPERM OBTAINED POST-HUMOUSLY RESULTS IN SUCCESSFUL DELIVERY AFTER INTRACYTOPLASMIC SPERM INJECTION (ICSI)

83 PREGNANCY RATES WITH FROZEN TESSE SPERM ARE HIGHLY DEPENDENT ON AGE OF FEMALE PARTNER
P. Studney, M. Puccini, L. Ray, L. Nelson, C. Niederberger, L. Ross, G.S. Prins

84 CASE STUDY: PREGNANCY RESULTING FROM IVF FOLLOWING ICSI USING SPERM HEAD WITH DETACHED TAIL / B.R. Emery, C. Thorp, P. Kuneck, L. Erickson, D.T. Carrell

85 ICSI- AND ROSI-MEDIATED TRANSGENESIS IN THE MOUSE / H. Akutsu, H. Kusakabe, T. Osada, R. Yanagimachi

poster session 2

87 GENE EXPRESSION PROFILES IN THE VENTRAL, DORSAL AND LATERAL LOBES OF THE BROWN NORWAY RAT PROSTATE / T.R. Brown, Y. Tian

88 DIFFERENTIAL EXPRESSION OF NITRIC OXIDE SYNTHASE ISOFORMS IN HUMAN PROSTATE (BPH, PROSTATIC CARCINOMA AND NORMAL) TISSUE

89 PROTEIN PROFILING OF EXPRESSED PROSTATIC SECRETIONS / C.H. Muller, D. Diamond, R.E. Berge

90 INCREASED TISSUE FACTOR (TF) EXPRESSION IN PROSTATE CANCER: ROLE AS NEOPLASTIC MARKER IN EXFOLIATED PROSTATE CELLS IN POST-PROSTATE MASSAGE URINE
M.J. Wilson, T.J. Kappel, R. Bach, R. Haller, J.W. Slaton, N.F. Wasserman, B. Quast, A.A. Sinha

91 THE ASSOCIATION BETWEEN ANDROGEN RECEPTOR AND EGF RECEPTOR INHIBITS EGF-INDUCED INVASION IN PROSTATE CANCER CELL LINES / L. Bonaccorsi, V. Carloni, M. Muratori, G. Forti, E. Baldi

92 LONG-TERM EFFICACY OF LHRH AGONIST THERAPY AND ANTI-ANDROGEN MONOTHERAPY IN THE TREATMENT OF LOCALIZED (T1-3) PROSTATE CANCER

93 EARLY USE OF VACUUM CONSTRUCTION DEVICE (VCD) FOLLOWING RADICAL PROSTATECTOMY (RP) FACILITATES EARLY SEXUAL ACTIVITY AND POTENTIAL RETURN OF ERECTION
R. Raina, R.A. Saleh, J. Chauhan, A. Agarwal, C. D. Zippe

94 DIETARY ISOFLAVONES INDUCE APOPTOSIS IN PROSTATE CARCINOMA

95 IS TESTOSTERONE AND PSA RELATED IN ELDERLY POPULATION?
K.H. Rha, J.W. Jung, Y. D. Choi, S. W. Han, S. J. Hong, M. S. Lee

96 ACCUMULATION OF MACROPHAGES IN THE TESTIS, EFFERENT DUCTS AND EPIDIDYMIS OF CATHEPSIN A DEFICIENT MICE / N. Korah, A. d'Azza, L. Hermo

97 SHORT AND LONG-TERM EFFECTS OF THE ANTI-ESTROGEN ICI 182,780 ON THE TESTIS AND EFFERENT DUCTULES, WITHOUT CHANGES IN TESTOSTERONE 1

98 GERM CELL-SPECIFIC EXPRESSION OF A CYSTATIN-RELATED EPIDIDYMAL SPERMATOGENIC (CRES) PROTEIN-CAT TRANSGENE / N. Hsia, J.P. Brousal, S.R. Hann, G.A. Cornwall
EFFECT OF 5 ALPHA-REDUCTASE (5a-R) INHIBITION ON GENE EXPRESSION IN THE EPIDIDYMIS / N. Henderson, B. Robaire

ANALYSIS OF THE 5' UPSTREAM REGION OF RAT 5 ALPHA REDUCTASE (5a-R) TYPE / S. Seenundun, B. Robaire

FURTHER CHARACTERIZATION OF THE MURINE EPIDIDYMAL SPAM1 (PH-20) / P.A. Martin-DeLeon, H. Zhang

AN ANTIMICROBIAL ROLE FOR THE EP2/HE2 GENE IN THE EPIDIDYMIS / O. Froehlich, C. Po, L.G. Young

CHARACTERIZATION AND IDENTIFICATION OF CAPACITATION-ASSOCIATED PIG SPERM TYROSINE PHOSPHO PROTEINS / C. Reyes-Moreno, C. Dube, S. Tardif, J.L. Bailey

DIFFERENT SIGNAL TRANSDUCTION PATHWAYS ARE INVOLVED DURING HUMAN SPERM CAPACITATION INDUCED BY BIOLOGICAL AND PHARMACOLOGICAL AGENTS / J. Thundathil, E. de Lamirande, C. Gagnon

COMBINATION OF DETERGENT AND DTT CAUSES PATERNAL CHROMOSOME DAMAGE / M.A. Szczygiel, R. Yanagimachi, W.S. Ward

MALE INFERTILITY IN NECTIN-2 DEFICIENT MICE / S Mueller, T.A. Rosenquist, R.A. Bronson, E. Wimmer

SPERMATOGENIC TRAIT DIFFERENCES IN THE NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CAT / K. Stoebel, K. Jwegenow, S. Blottner, D.E. Wildt, B.S. Pukazhenthi

TERATOZOOSPERMIA - MOLECULAR BACKGROUND OF SPERM DYSFUNCTION / M. Szczygiel, M. Kurpisz

EXPRESSION ANALYSIS OF THE Y CHROMOSOME GENES IN IDIOPATHIC AZOOSPERMIA AND SEVERE OLIGOZOOSPERMIA / E. Koh, H. Suzuki, M. Namiki

CARNITINE TREATMENT OF OLIGOZOOSPERMIC MEN IN IU/IVF PROCEDURE / S. Micic, N. Lalic, N. Bojanic

RELATIONSHIP BETWEEN AGE OF MAN, SPERM DNA FRAGMENTATION AND INFERTILITY / D. Evenson, M. Virro, J. Brannian, C. deJonge

THE DEGREE OF SPERM DNA FRAGMENTATION AND/OR STABILITY TO PREDICT THE OUTCOME OF INTRAUTERINE INSEMINATION / M. Morshedi, H. Duran, S. Taylor, S. Oehninger

DEVELOPMENT OF AN INEXPENSIVE ARTIFICIAL VAGINA FOR SEMEN COLLECTION FROM RABBITS / C.K. Naughton, D. Nelson, A.J. Thomas, Jr.

A NOVEL HOME-USE TEST DEVICE FOR MOTILE SPERM / L. Bjorndahl, I. Brewis, E. Barratt, B. Ola, D. Bradley, K. Sharif, M. Afnan, C. Barratt

A DOUBLE CHAMBER DEVICE FOR ADVANCED SPERM TESTING: SEMEN ANALYSIS AND AN ASSAY FOR SPERM MATURITY BY HYALURONIC ACID (HA) BINDING / G. Huszar, C. Celik-Ozenci, A. Jakab, L. Vigue

HUMAN OR ANIMAL FERTILITY - EVALUATION OF OUTCOME TO ESTABLISH UTILITY OF A DIAGNOSTIC TEST OF SPERM QUALITY OR DETECT A CHANGE IN FERTILIZING POTENTIAL OF SPERM / R.P. Amann, R.H. Hammerstedt

poster session 2

122 NONGENOMIC PROGESTERONE RECEPTORS IN HUMAN SPERMATOZOA
M. Luconi, L. Bonaccorsi, G. Forti, E. Baldi

123 REDUCTION OF SEMINAL ANTIOXIDANT CAPACITY IN INFERTILE MEN WITH LEUKOCYTOPERMA:
A PROSPECTIVE STUDY / R.A. Saleh, R.K. Sharma, J. Chauhan, M. Oder, N. Esfandiar, D.R. Nelson, E.A. Nada,
R. Raina, A.J. Thomas, Jr., A. Agarwal

124 MEIOTIC ABNORMALITIES IN AZOOSPERMIA AND BILATERAL VARICOCELE / G. Tritto, M.O. North

125 INFLUENCE ON THE PREGNANCY OF MOTILITY OF FRESH AND FROZEN-THAWED TESTICULAR
SPERMATOZOA IN OBSTRUCTIVE AZOOSPERMIA

126 EFFECTS OF TWO TECHNIQUES OF LEFT VARICOCELECTOMY (VRCL) ON FERTILIZATION AND EMBRYONIC
CAPACITY FOR IMPLANTATION / A. Chatzikyriakidou, Ch. Mamoulakis, A. Kaponis, X. Giannakopoulos, I. Miyagawa,
D. Tsalikis, D. Yiannakis, N. Sofistikis

127 PREVALENCE OF VARICOCELE IN CHILDREN AND ADOLESCENTS IN NAMHAE, KOREA; 3-YEAR FOLLOW-UP
STUDY / K.H. Rha, J.H. Kim, B.H. Kim, D.H. Kwon, D.Y. Lee, S. W. Han, M. S. Lee

128 THE USE OF CYANOACRYLATE IN NEW TECHNIQUE OF VASOVASOSTOMY

129 FERTILITY AFTER CANCER: A PROSPECTIVE REVIEW OF ASSISTED REPRODUCTIVE OUTCOME WITH BANKED

130 TADALAFIL PROVIDES PROMPT RESPONSE AND EXTENDED PERIOD OF RESPONSIVENESS FOR THE TREATMENT OF MEN WITH ERECTILE DYSFUNCTION / H. Padma-Nathan, K. Saikali, V. Watkins, A. Yu, S.J. Whitaker

131 TADALAFIL SIGNIFICANTLY IMPROVES ERECTILE FUNCTION IN MEN WITH ED, INTEGRATED ANALYSIS OF
REGISTRATION TRIALS / H. Padma-Nathan, S. Wei, A. Yu, S.J. Whitaker

132 TRANSPENILE DELIVERY OF MICROVASCULOKINETIC DRUGS (TRAPS) IN ERECTILE DYSFUNCTIONS. LASER
DOPPLER FLOWMETRY STUDY / G. Tritto

133 ARE COMPLICATIONS NECESSARILY MORE COMMON WITH COMPLEX PENILE PROSTHESIS IMPLANTATION?
R. Wang, V.A. Cancellaro, K.W. Lennox, R.W. Lewis

134 PROSPECTIVE STUDY OF PREOPERATIVE AND POSTOPERATIVE NOCTURNAL PENILE TUMESCEENCE (NPT) IN
MEN UNDERGOING BILATERAL NERVE SPARING RADICAL PROSTATECTOMY (BNSRRP)
A. McCullough, L. Levine, H. Padma-Nathan

135 LONG-TERM INTRACAVERNOUS (IC) THERAPY RESPONDERS CAN POTENTIALLY SWITCH TO SILDENAFIL CITRATE AFTER RADICAL PROSTATECTOMY (RP) / R. Raina, R.A. Saleh, J. Chauhan, S. Ausmundson, M. M. Lakin

136 COMBINATION THERAPY: SILDENAFIL CITRATE ENHANCES SEXUAL SATISFACTION IN VACUUM CONSTRUCTION DEVICE (VCD) FAILURES FOLLOWING RADICAL PROSTATECTOMY (RRP)

137 SILDENAFIL PLUS SERTRALINE IN THE TREATMENT OF PREMATURE EJACULATION / A.F. Lozano

138 PEDIATRIC HERNIORAGEPHY AS AN UNUSUAL CAUSE OF TESTICULAR PAIN: MECHANISM AND
PATHOPHYSIOLOGY / J.I. Sandlow, C.G. Christiansen

140 THE EFFECT OF TREATMENT OF SPERM WITH SUBNORMAL HYPOOSMOTIC SWELLING TEST (HOST) SCORES
WITH THE PROTEIN DIGESTIVE ENZYME CHYMOTRYSIN ON SUBSEQUENT VIABLE PREGNANCY RATES
PRs) AFTER INTRAUTERINE INSEMINATION (IUI) / M.L. Check, D. Kiefer, J.H. Check, W. Hourani, A. Bollendorf

27th annual meeting of the american society of andrology • 21
EFFECT ON PSA LEVELS OF THE NOVEL, DUAL 5α REDUCTASE INHIBITOR, DUTASTERIDE WITH MARKED SUPPRESSION OF DIHYDROTESTOSTERONE / R.V. Clark, T.H. Wilson, C.G. Roehrborn, G. Andriole

DIFFERENTIAL CELLULAR PROLIFERATION AND APOPTOSIS OF HUMAN CAVERNOSAL CELLS IN RESPONSE TO OXIDATIVE STRESS AND ANTIOXIDANTS / S.C. Sikka, H. Wang, W.J. G. Hellstrom

TARGETED MULTICOLOR FLUORESCENCE IN SITU HYBRIDIZATION (FISH) DETECTS TRANSITIONAL CELL CARCINOMA (TCC) IN PATIENTS WITH ATYPICAL TRANSITIONAL CELLS BY URINARY CYTOLOGY / R. Raina, M. Skacel, L. Liou, A. Agarwal, R.R. Tubbs, C.D. Zippe
Index of Abstract Authors

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Mageed, A</td>
<td>Bach, R.</td>
<td>Cameron, A.</td>
<td>diAzzo, A.</td>
<td>Echeverria, R.</td>
<td>Fernandez-Novell, J</td>
</tr>
<tr>
<td>Adams, D.</td>
<td>Bailey, J.</td>
<td>Cameron, D.</td>
<td>Darszon, A.</td>
<td>Elbers, J.</td>
<td>Ficarro, S.</td>
</tr>
<tr>
<td>Adeeko, A.</td>
<td>Baldi, E.</td>
<td>Cancellaro, V.</td>
<td>Davis, R.</td>
<td>Elsner, C.</td>
<td>Flesch, F.</td>
</tr>
<tr>
<td>Afman, M.</td>
<td>Ball, B.</td>
<td>Cano, J.</td>
<td>Dawson, G.</td>
<td>Emery, B.</td>
<td>Flowers, A.</td>
</tr>
<tr>
<td>Agarwal, A.</td>
<td>Ballester, J.</td>
<td>Carloni, V.</td>
<td>de Kretser, D.</td>
<td>Erickson, L.</td>
<td>Folmer, J.</td>
</tr>
<tr>
<td></td>
<td>Baltogiannis, D.</td>
<td>Carnes, K.</td>
<td>de Lamirande, E.</td>
<td>Esfandiari, N.</td>
<td>Forbes, E.</td>
</tr>
<tr>
<td></td>
<td>Bamber, J.</td>
<td>Carrell, D.</td>
<td>de Lima Nessralla, C.</td>
<td>Forti, G.</td>
<td>Freydenberg, M.</td>
</tr>
<tr>
<td></td>
<td>Bandaranayake, I.</td>
<td>Cassall, G.</td>
<td>de Jonge, C.</td>
<td>Fowlie, I.</td>
<td>Frydendal, M.</td>
</tr>
<tr>
<td></td>
<td>Barratt, C.</td>
<td>Celik-Ozenci, C.</td>
<td>Demarco, I.</td>
<td>Foyo, N.</td>
<td>Galtung, H.</td>
</tr>
<tr>
<td></td>
<td>Barratt, E.</td>
<td>Champion, H.</td>
<td>Demetriades, D.</td>
<td>Franca, L.</td>
<td>Goto, M.</td>
</tr>
<tr>
<td></td>
<td>Barthelemy, J.</td>
<td>Charalampous, M.</td>
<td>Diamond, D.</td>
<td>Frankenburg, D.</td>
<td>Griswold, M.</td>
</tr>
<tr>
<td></td>
<td>Bastiaan, H.</td>
<td>Chatzikiakidou, A.</td>
<td>Diamanti, I.</td>
<td>Friell, P.</td>
<td>Grunewald, S.</td>
</tr>
<tr>
<td></td>
<td>Bauer, R.</td>
<td>Chauhan, J.</td>
<td>Dijkstra, M.</td>
<td>Frisbie, P.</td>
<td>Guinovart, J.</td>
</tr>
<tr>
<td></td>
<td>Bellin, M.</td>
<td>Chavarria-Guevara,</td>
<td>Dohra, M.</td>
<td>Froehlich, O.</td>
<td>Guo, T.</td>
</tr>
<tr>
<td></td>
<td>Benoff, S.</td>
<td>J.</td>
<td>Dowling, C.</td>
<td>Gwathmey, T.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berger, R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berhane, K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biarda, B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bilodeau, J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bivalacqua, T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bivalacqua, J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bjorndahl, L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blottner, S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bohle, D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bohring, C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bojanic, N.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bollendonk, A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bonaccorsi, L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boston, W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boyd, B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bradley, D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brannian, J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Braun, K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bray C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bregunci G.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brewis I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronson R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronson S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronson R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brousal J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byun H.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doyle, T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dube, C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duran, H.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durrance, M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27th Annual Meeting of the American Society of Andrology • 23
index of abstract authors

H
Hardy, M. 34, 48, 54
Hassan, A. 31
Hawkings, H. 121
Hellstrom, W. 3,142
Henderson, N. 99
Hermo, L. 96
Herr, J. 104
Hess, R. 36, 44, 97
Hickox, D. 12
Hikim, A. 10
Hockensmith, J. 14
Holland, S. 56
Holmes, M. 81
Hong, S. 95
Houri, W. 140
Houwing, N. 47
Howard, J. 110
Hsiia, N. 13, 98
Hsiu, M. 107
Hunt, D. 104
Hurley, I. 21
Husband, A. 94
Huszen, J. 43
Huszar, G. 59,119
Hutson, J. 39

I
Ignatz, G. 15
Irvine, C. 52
Ismail, R. 86

J
Jackson, G. 97
Jakab, A. 119
Jarred, R. 94
Jayes, F. 104
Jervis, K. 51
Jewgenow, K. 111
Johnson, R. 82
Jung, J. 95

K
Kalab, P. 104
Kang, I. 125
Kaponis, A. 79,126
Kappel, T. 90
Keenan, D. 52
Kersten, C. 9
Kesner, J. 56
Kiefer, D. 140
Kieseheretter, F. 2
Kilani, Z. 86
Kim, B. 127
Kim, E. 76
Kim, J. 127
Kim, K. 24,29
Kishikawa, H. 27
Kiso, M. 49
Klein, E. 4
Klepacz, H. 143
Klinefelter, G. 34, 54
Kluge, P. 40, 80
Knecht, E.A. 56
Kobayashi, H. 129
Koh, E. 113
Komatsu, K. 49
Kong, M. 17
Kopf, G. 14
Korah, N. 96
Kort, H. 81
Kozioi, K. 40,80
Kraft, P. 76
Krause, W. 62
Kuehl, D. 97
Kuneck, P. 84
Kurpiisz, M. 112
Kusakabe, H. 85
Kwon, D. 127

L
Lakin, M. 4, 5, 135, 136
Labric, N. 114
Leclerc, P. 70
Lee, D. 127
Lee, H. 125
Lee, M. 73, 77, 95,127
Lee, S. 125
Lee, Y. 125
Lefrancois, S. 31
Lennox, K. 133
Lessard, C. 70
Leung, A. 42
Levine, L. 134
Lewandrowski, P. 40, 80
Lewis, R. 133,139
Lezana, V. 50
Li, Y. 30
Li, D. 53
Lin, Z. 106,107
Lindberg, I. 13
Liu, L. 144
Liu, P. 7
Lozano, A. 137
Lubahn, D. 44
Luconi, M. 122
Lue, H. 10
Lue, Y. 42, 45
Luft, J. 57
Lukyanenko, Y. 39
Lysiak, J. 38

M
Maeda, Y. 25
Magyar, P. 11
Mamaladze, V. 26
Mamoulakis, Ch. 79,126
Manabe, N. 49
Mani, N. 6
Marmar, J. 21
Marshall, G. 33
Martin-DeLeon, P. 101
Martini, L. 46
Massey, J. 66
Matsumiya, K. 27
McBean, A. 65
McCarre, J. 19
McCullough, A. 6,134
McLachan, R. 7
McLean, D. 19, 24, 30
McPherson, S. 94
Mehta, Y. 88
Meikle, A. 47
Meizel, S. 16
Micic, S. 114
Miki, K. 11
Millan, C. 21
Miyagawa, I. 79,126
Miayamotio, H. 49
Mohaar, I. 18
Montville, C. 65
Moorman, W. 60
Moparty, K. 88
Morales, P. 17
Morales, C. 31
Moreno, A. 50,128
Morschel, M. 106,107,116
Mrk, D. 32
Mueller, S. 109
Muller, C. 89
Muratori, M. 91

N
Nada, E. 78,123
Nakai, M. 97
Nakanishi, Y. 25
Namiki, M. 25,113
Naughton, C. 117
Nelson, D. 4,74,78,92,117,123,143
Nelson, L. 83
Nga Lau, A. 32
Nie, R. 44, 97
Niederberger, C. 83
Nishimune, Y. 27
Noh, J. 77
North, M. 124

O
O'Brien, D. 11
O'Bryan, M. 12
Oder, M. 74, 78,123,129
Oehninger, S. 106,107,116
Okabe, M. 27
Okuno, T. 27
Okuyama, A. 27
Ola, B. 118
Oliveira, C. 97
Oller, M. 110
Osada, T. 85
Oudes, A. 29
Oula, L. 63
Oyarzo, J. 12

24 • 27th annual meeting of the american society of andrology
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paasch, U.</td>
<td>68</td>
</tr>
<tr>
<td>Padma-Nathan, H.</td>
<td>1,120,131,134</td>
</tr>
<tr>
<td>Paige, B.</td>
<td>78</td>
</tr>
<tr>
<td>Palomeno, G.</td>
<td>45</td>
</tr>
<tr>
<td>Palomo, M.</td>
<td>64</td>
</tr>
<tr>
<td>Park, W.</td>
<td>73,77</td>
</tr>
<tr>
<td>Park, Y.</td>
<td>125</td>
</tr>
<tr>
<td>Pasqualotto, F.</td>
<td>129</td>
</tr>
<tr>
<td>Pasten, C.</td>
<td>17</td>
</tr>
<tr>
<td>Pedersen, J.</td>
<td>94</td>
</tr>
<tr>
<td>Pereira, F.</td>
<td>57</td>
</tr>
<tr>
<td>Perreau, S.</td>
<td>56,58,60</td>
</tr>
<tr>
<td>Piccioni, F.</td>
<td>88</td>
</tr>
<tr>
<td>Pizarro, E.</td>
<td>46</td>
</tr>
<tr>
<td>Plant, T.</td>
<td>33</td>
</tr>
<tr>
<td>Podme, L.</td>
<td>143</td>
</tr>
<tr>
<td>Pozzi, P.</td>
<td>46</td>
</tr>
<tr>
<td>Prins, G.</td>
<td>83</td>
</tr>
<tr>
<td>Pucinni, M.</td>
<td>83</td>
</tr>
<tr>
<td>Pukazhenthi, B.</td>
<td>110,111</td>
</tr>
<tr>
<td>Q</td>
<td>11</td>
</tr>
<tr>
<td>Qu, W.</td>
<td>90</td>
</tr>
<tr>
<td>Quast, B.</td>
<td>4,5,7,8,92,93,123,135,136,143,144</td>
</tr>
<tr>
<td>R</td>
<td>74,129</td>
</tr>
<tr>
<td>Raina, R.</td>
<td>4,5,78,92,93,123,135,136,143,144</td>
</tr>
<tr>
<td>Rangana, P.</td>
<td>9,22,23</td>
</tr>
<tr>
<td>Ray, L.</td>
<td>83</td>
</tr>
<tr>
<td>Raychoudhury, S.</td>
<td>61</td>
</tr>
<tr>
<td>Reyes-Moreno, C.</td>
<td>103</td>
</tr>
<tr>
<td>Rha, K.</td>
<td>73,77,95,127</td>
</tr>
<tr>
<td>Rigau i Mas, T.</td>
<td>124</td>
</tr>
<tr>
<td>Risbridger, G.</td>
<td>94</td>
</tr>
<tr>
<td>Robaire, B.</td>
<td>51,53,99,100</td>
</tr>
<tr>
<td>Roberts, N.</td>
<td>54</td>
</tr>
<tr>
<td>Robinson, M.</td>
<td>30</td>
</tr>
<tr>
<td>Rocket, J.</td>
<td>29</td>
</tr>
<tr>
<td>Rodriguez, S.</td>
<td>10</td>
</tr>
<tr>
<td>Rodriguez-Gil, J.</td>
<td>64</td>
</tr>
<tr>
<td>Roehrborn, C.</td>
<td>141</td>
</tr>
<tr>
<td>Rodgers, J.</td>
<td>54</td>
</tr>
<tr>
<td>Rohde, G.</td>
<td>124</td>
</tr>
<tr>
<td>Rosenquist, T.</td>
<td>109</td>
</tr>
<tr>
<td>Ross, L.</td>
<td>83</td>
</tr>
<tr>
<td>Roudeush, W.</td>
<td>66,81</td>
</tr>
<tr>
<td>Rubles, J.</td>
<td>75</td>
</tr>
<tr>
<td>Ruff, P.</td>
<td>139</td>
</tr>
<tr>
<td>Sanchez, G.</td>
<td>28</td>
</tr>
<tr>
<td>Sandlow, J.</td>
<td>138</td>
</tr>
<tr>
<td>Sarma, D.</td>
<td>88</td>
</tr>
<tr>
<td>Schrader, S.</td>
<td>56,58,60</td>
</tr>
<tr>
<td>Schuffner, A.</td>
<td>106,107</td>
</tr>
<tr>
<td>Seenundun, S.</td>
<td>100</td>
</tr>
<tr>
<td>Seo, J.</td>
<td>125</td>
</tr>
<tr>
<td>Serrano, R.</td>
<td>50</td>
</tr>
<tr>
<td>Shabanowitz, J.</td>
<td>104</td>
</tr>
<tr>
<td>Shane, P.</td>
<td>24</td>
</tr>
<tr>
<td>Sharif, K.</td>
<td>118</td>
</tr>
<tr>
<td>Sharma, R.</td>
<td>78,123,143</td>
</tr>
<tr>
<td>Shaw, P.</td>
<td>60</td>
</tr>
<tr>
<td>Shimabe, M.</td>
<td>49</td>
</tr>
<tr>
<td>Shiratsuchi, A.</td>
<td>25</td>
</tr>
<tr>
<td>Sikka, S.</td>
<td>88,142</td>
</tr>
<tr>
<td>Simeoni, S.</td>
<td>46</td>
</tr>
<tr>
<td>Simorangkir, D.</td>
<td>33</td>
</tr>
<tr>
<td>Sinha Hikim, A.</td>
<td>42,45,90</td>
</tr>
<tr>
<td>Skacel, M.</td>
<td>144</td>
</tr>
<tr>
<td>Skrzypek, J.</td>
<td>62</td>
</tr>
<tr>
<td>Slaton, J.</td>
<td>90</td>
</tr>
<tr>
<td>Slayden, S.</td>
<td>81</td>
</tr>
<tr>
<td>Sofikitis, N.</td>
<td>41,79,126</td>
</tr>
<tr>
<td>Son, J.</td>
<td>16</td>
</tr>
<tr>
<td>Song, S.</td>
<td>125</td>
</tr>
<tr>
<td>Song, J.</td>
<td>14</td>
</tr>
<tr>
<td>Songer, K.</td>
<td>111</td>
</tr>
<tr>
<td>Strader, L.</td>
<td>57</td>
</tr>
<tr>
<td>Studney, P.</td>
<td>83</td>
</tr>
<tr>
<td>Suarez, S.</td>
<td>15</td>
</tr>
<tr>
<td>Suarez, J.</td>
<td>54</td>
</tr>
<tr>
<td>Sugimoto, M.</td>
<td>49</td>
</tr>
<tr>
<td>Sullivan, R.</td>
<td>70</td>
</tr>
<tr>
<td>Summers-Change, D.</td>
<td>82</td>
</tr>
<tr>
<td>Swerdloff, R.</td>
<td>10,42,45,47</td>
</tr>
<tr>
<td>Szczygiel, M.</td>
<td>18,108,112</td>
</tr>
<tr>
<td>T</td>
<td>128</td>
</tr>
<tr>
<td>Tapia-Serrano, R.</td>
<td>103</td>
</tr>
<tr>
<td>Tardif, S.</td>
<td>54</td>
</tr>
<tr>
<td>Tarka, D.</td>
<td>79</td>
</tr>
<tr>
<td>Tasos, A.</td>
<td>2</td>
</tr>
<tr>
<td>Taylor, T.</td>
<td>116</td>
</tr>
<tr>
<td>Taylor, S.</td>
<td>6</td>
</tr>
<tr>
<td>Telegrafo, S.</td>
<td>110</td>
</tr>
<tr>
<td>Teter, B.</td>
<td>129</td>
</tr>
<tr>
<td>Thomas, A.</td>
<td>117,123</td>
</tr>
<tr>
<td>Thomas, Jr., A.</td>
<td>84</td>
</tr>
<tr>
<td>Thorp, C.</td>
<td>105</td>
</tr>
<tr>
<td>Thundathil, J.</td>
<td>87</td>
</tr>
<tr>
<td>Tian, Y.</td>
<td>27</td>
</tr>
<tr>
<td>Tohda, A.</td>
<td>66</td>
</tr>
<tr>
<td>Toledo, A.</td>
<td>20</td>
</tr>
<tr>
<td>Toppari, J.</td>
<td>50</td>
</tr>
<tr>
<td>Torres, M.</td>
<td>53</td>
</tr>
<tr>
<td>Traller, J.</td>
<td>8,37</td>
</tr>
<tr>
<td>Tremblay, J.</td>
<td>124,132</td>
</tr>
<tr>
<td>Tritto, G.</td>
<td>79</td>
</tr>
<tr>
<td>Tsabalanis, S.</td>
<td>126</td>
</tr>
<tr>
<td>Tsai, D.</td>
<td>27</td>
</tr>
<tr>
<td>Tsujimura, A.</td>
<td>144</td>
</tr>
<tr>
<td>Tubb, R.</td>
<td>144</td>
</tr>
<tr>
<td>Turner, L.</td>
<td>7</td>
</tr>
<tr>
<td>Turner, T.</td>
<td>38,58,60</td>
</tr>
<tr>
<td>V</td>
<td>52</td>
</tr>
<tr>
<td>Veldhuis, J.</td>
<td>8,37</td>
</tr>
<tr>
<td>Viger, R.</td>
<td>59,119</td>
</tr>
<tr>
<td>Vigue, M.</td>
<td>115</td>
</tr>
<tr>
<td>Visconti, P.</td>
<td>14,104</td>
</tr>
<tr>
<td>W</td>
<td>10,42,45,47</td>
</tr>
<tr>
<td>Wang, C.</td>
<td>142</td>
</tr>
<tr>
<td>Wang, H.</td>
<td>133,139</td>
</tr>
<tr>
<td>Wang, R.</td>
<td>18,108</td>
</tr>
<tr>
<td>Ward, W.</td>
<td>90</td>
</tr>
<tr>
<td>Wasserman, N.</td>
<td>130</td>
</tr>
<tr>
<td>Watkins, V.</td>
<td>131</td>
</tr>
<tr>
<td>Wei, S.</td>
<td>104</td>
</tr>
<tr>
<td>Westbrook, A.</td>
<td>22</td>
</tr>
<tr>
<td>Whitaker, S.</td>
<td>110,11</td>
</tr>
<tr>
<td>White, F.</td>
<td>104</td>
</tr>
<tr>
<td>Whitmire, E.</td>
<td>110,11</td>
</tr>
<tr>
<td>Wildt, D.</td>
<td>90</td>
</tr>
<tr>
<td>Wilson, M.</td>
<td>141</td>
</tr>
<tr>
<td>Wilson, T.</td>
<td>109</td>
</tr>
<tr>
<td>Wimmer, E.</td>
<td>7</td>
</tr>
<tr>
<td>Wishart, S.</td>
<td>81</td>
</tr>
<tr>
<td>Witt, M.</td>
<td>40,80</td>
</tr>
<tr>
<td>Wolski, J.</td>
<td>43</td>
</tr>
<tr>
<td>Wolski, K.</td>
<td>35,48</td>
</tr>
<tr>
<td>Y</td>
<td>42</td>
</tr>
<tr>
<td>Yamamoto, C.</td>
<td>85,108</td>
</tr>
<tr>
<td>Yanagimachi, R.</td>
<td>3</td>
</tr>
<tr>
<td>Yang, D.</td>
<td>10</td>
</tr>
<tr>
<td>Yen, P.</td>
<td>126</td>
</tr>
<tr>
<td>Yiannakis, D.</td>
<td>125</td>
</tr>
<tr>
<td>Youm, T.</td>
<td>104</td>
</tr>
<tr>
<td>Young, L.</td>
<td>117,123</td>
</tr>
<tr>
<td>Yu, A.</td>
<td>1,130,131</td>
</tr>
<tr>
<td>Yun, J.</td>
<td>125</td>
</tr>
<tr>
<td>Z</td>
<td>139</td>
</tr>
<tr>
<td>Zelinski, M.</td>
<td>101</td>
</tr>
<tr>
<td>Zheng, H.</td>
<td>44,9</td>
</tr>
<tr>
<td>Zhou, Q.</td>
<td>45,92,93,136,143,144</td>
</tr>
<tr>
<td>Zippe, C.</td>
<td>35,48</td>
</tr>
<tr>
<td>Zirkin, B.</td>
<td>75</td>
</tr>
<tr>
<td>Zudova, D.</td>
<td>75</td>
</tr>
</tbody>
</table>
THE EFFECT OF AS-NEEDED TADALAFIL TREATMENT OF ERECTILE DYSFUNCTION IN MEN WITH DIABETES
H. Padma-Nathan1, G. Anglin2, A. Yu2, and S.J. Whicker3 for the International Tadalafil Study Group. 1University of Southern California, Los Angeles, USA; 2ElI Lilly Canada, Scarborough, Canada; 3ICOS Corporation, Bothell, USA.

Objectives: Tadalafil is a potent and selective inhibitor of phosphodiesterase type 5 under review for marketing approval for the treatment of erectile dysfunction (ED). The purpose of this multicenter, double-blind, placebo-controlled study was to assess the efficacy and safety of tadalafil taken as needed by diabetic men with mild-to-severe ED. Methods: Two hundred sixteen men (mean age: 56 years) with mild-to-severe ED and diabetes (type 1 or 2) were enrolled. Baseline (BL) International Index of Erectile Function (IIEF) scores and Sexual Encounter Profile (SEP) diary information were collected during a 4-week treatment-free run-in period. Patients were randomized to receive placebo (PBO) or tadalafil 10 or 20 mg for 12 weeks. Endpoints included the change from BL in IIEF Erectile Function domain scores and SEP diary data, and the percentage of “yes” responses to a global assessment question (GAQ). Results: Tadalafil 10 and 20 mg significantly improved IIEF Erectile Function domain scores when compared with PBO (change from BL: tadalafil 10 mg [6.4] and 20 mg [7.3], versus PBO [0.1]; P < 0.001). In addition, tadalafil 10 and 20 mg improved erectile function (IIEF Erectile Function domain) and successful intercourse attempts (SEP Questions 2 and 3) in a greater percentage of diabetic patients than PBO. Both doses of tadalafil were superior to placebo in the percentage of “yes” responses to GAQ (tadalafil 10 mg [56%] and 20 mg [64%], versus PBO [25%]; P < 0.001). Tadalafil 10 and 20 mg were generally well tolerated. There were no treatment-related changes in lab values, ECGs, or vital signs. Most adverse events were mild to moderate in intensity. The most common treatment-related adverse events occurring in more than 5% of tadalafil-treated patients were dyspepsia and headache, which were mild to moderate in intensity. Conclusions: In this study, tadalafil 10 and 20 mg demonstrated superiority to PBO when administered as needed for the treatment of mild-to-severe ED in diabetic men and was well tolerated.

ENDOTHELIAL NITRIC OXIDE SYNTHASE GENE TRANSFER RESTORES NITRIC OXIDE PRODUCTION AND ERECTILE FUNCTION IN DIABETES Trinity J. Bivalacqua, Dave Adams, Hunter C. Champion, Dae Yul Yang, Asim B. Abdel-Mageed, and Wayne J. Hellstrom.

Diabetes causes a decrease in cavernosal nitric oxide (NO) bioavailability that is associated with a diminished erectile response. The purpose of this study was to determine whether adenosine-mediated overexpression of endothelial nitric oxide synthase (ENOS) could restore NO production and erectile function. Three groups of animals were utilized: 1) age matched control rats, 2) streptozotocin (STZ)-induced diabetic rats (65 mg/kg ip) transfected with AdCMVgal, and 3) STZ-rats with AdCMVEnOS. One day after transfection, these study animals underwent cavernosal nerve stimulation (CNS) to assess erectile function. eNOS and nNOS protein levels (Western blot), NOS activity (L-arginine to L-citrulline conversion), cGMP and nitrate + nitrite levels (ELISA) were assessed in cavernosal tissue from all three groups of animals. Diabetic animals had significant decreases in cavernosal nNOS, NOS activity, cGMP and nitrate + nitrite levels. One day after administration of AdCMVEnOS, eNOS protein, NOS activity, cGMP and nitrate + nitrite levels in the corpora cavernosa were significantly increased (P < 0.05) to levels similar to control animals. STZ-rats had a significantly decreased erectile function as determined by CNS when compared to control rats. The increase in cavernosal pressure in response to CNS was enhanced in STZ-rats transfected with eNOS that was similar to control rats. Enhanced expression of eNOS employing an adenosine vector restored erectile function in the diabetic rat. These data suggest that gene-transfer of eNOS may constitute a new therapeutic intervention for the treatment of diabetic ED.

LONG TERM EFFICACY OF SILDENAFIL CITRATE FOLLOWING RADICAL PROSTATECTOMY (RP): 3-YEAR FOLLOW-UP Rupesh Raina*, David R Nelson, Ashok Agarwal, Milton M Lakin, Eric A Klein, Craig D Zippe, Cleveland, OH

To evaluate long term efficacy and safety of sildenafil for the treatment of erectile dysfunction (ED) after RP. Data from 41 patients who responded to sildenafil therapy at 1 year following RP were stratified according to the type of nerve sparing (NS) procedure: bilateral NS, unilateral NS, and non-NS. A telephone survey was conducted during the first year of sildenafil usage and repeated 3 years later. Sildenafil was prescribed at a dose of 50 mg, and increased to 100, if needed. The responses to the abridged 5-item International Index of Erectile Function (IIEF) questionnaire, the number of patients' attempts成功的 intercourse, partner satisfaction, and side effects were assessed. At 3 years, 71% (29/41) patients were still responding to sildenafil. Thirty-one percent (9/29) of these respondents had augmented their dose from 50 to 100mg. The drop out rate was 29% with 50% (6/12) discontinuing because of the return of natural erection; only 5 patients dropped out because of gradual loss of efficacy. The abridged IIEF item shows no difference in 1 yr and 3 yr scores in either of the nerve-sparing groups. Eighty-five percent of patients were sexually satisfied and 95% were able to achieve and maintain erection in more than 65% of attempts. The most common side effect at 3 years was: headache (12%), flushing (10%), and abnormal color vision (2%). No patient discontinued the drug at 3 years because of side effects. Following radical prostatectomy, patients with erectile dysfunction that respond to sildenafil continue to show excellent long-term efficacy and compliance.
LONG TERM EFFICACY AND COMPLIANCE OF INTRACORPOREAL (IC) PENILE INJECTIONS IN PATIENTS WITH ERECTILE DYSFUNCTION (ED) FOLLOWING RADICAL PROSTATECTOMY (RP).

The objective of this study was to determine the efficacy, frequency and long term compliance of IC penile injection in patients with ED following RP. The International Index of Erectile Function (IIEF) questionnaire and a follow-up profile sheet were sent to 75 patients using IC injection therapy for treatment of ED following RP. The Responses to IIEF questions 3 (frequency of penetration), 4 for (maintenance of erection) and 7 (sexual satisfaction) were scored from 0 (no intercourse) to 5 (always). The efficacy score (ES) was calculated by totaling responses to all three questions (0 = no intercourse, 1-5 = poor, 6-10 = moderate, 11-15 = good). The mean age of patients was 61 years. Prostaglandin E1 (PGE1) was used in 61% and Timex solution (PGE1, papavamine, phentolamine) in remaining 39%. The mean preoperative values for questions 3, 4 and 7 were 4.8, 4.8, and 4.8 respectively and the mean ES was 14.4. Following surgery (with a minimum follow up of 12 months), the mean scores for questions 3, 4 and 7 decreased to 1.4, 1.3, and 1.4, with an ES of 4.2. These scores increased significantly to 3.9, 3.8, and 3.61 and ES to 11.1 after IC injection therapy. There was no significant difference in responses between nerve sparing (NS) and non-NS groups (n = 30) or the type of medications used for IC therapy. Of the 75 patients, 39(52%) discontinued treatment due to problem with the IC. Overall, the efficacy score was good in 66.7%, moderate in 10.7% and poor in 22.7% of the patients. While oral therapy is the first option for erectile dysfunction following NS radical prostatectomy, the long term efficacy and compliance of IC makes it an excellent salvage option in patients who fail sildenafil and a first option in patients following non-NS surgery.

CONTRACEPTIVE EFFICACY OF A DEPOT ANDROGEN AND PROGESTIN COMBINATION IN MEN, L Turner*, S Wishart*, AJ Conway*, PY Lia*, E Forbes*, RI McLachan, DJ Handelsman. Department of Andrology, Concord Hospital. ANZAC Research Institute, University of Sydney, Sydney NSW 2139 & Prince Henry’s Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia

While hormonal male contraception has been theoretically feasible for decades with formal proof of principle demonstrated by the landmark WHO male contraceptive efficacy studies by the early 1990s, development of practical male contraceptive regimens has lagged. Following the landmark WHO studies, no male contraceptive efficacy studies using depot or combination hormonal regimens have been reported. We have completed the first study to estimate the contraceptive efficacy of a depot hormone regimen, an androgen/progestin combination, in men. Fifty-five men in stable relationships seeking a change in contraceptive method were administered testosterone (four 200 mg implants, every 4 or 6 months) and a synthetic progestin (300 mg depot medroxyprogesterone acetate, DMPA, every 3 months). Untreated patients presented at 6 months intervals demonstrated androgen deficiency symptoms &/or escape of spermatogenic suppression (predicted by suboptimal gonadotropin suppression) between months 5-6; men receiving implants at 4 months intervals had no androgen deficiency nor loss of gonadotropin and sperm output suppression. Recovery was slower than anticipated (median time 6-9 months to sperm density >20M/mL) presumably related to DMPA kinetics. Discontinuations were for protocol (12), personal (10) and medical (5) reasons but there were no serious adverse effects related to drug exposure. We conclude that the first prototype depot androgen/progestin combination regimen provides high contraceptive efficacy with satisfactory short-term safety but slow recovery of spermatogenesis. Larger and longer studies with purpose-developed depot combinations are required to clarify the overall safety and efficacy of the promising depot approach to hormonal male contraception. This study was supported by CONRAD.

PROTEIN KINASE A (PKA) ENHANCEMENT OF GATA-4-MEDIATED GENE EXPRESSION: A LINK WITH HORMONE-ACTIVATED CELL SIGNALING. J.J. Tremblay, F. Hamel*, R.S. Viger, CHUL Research Centre, Laval University, Quebec, PQ, Canada.

Gonadal gene expression is tightly regulated by pituitary trophic hormones. Hormone binding triggers activation of an intracellular signaling pathway that typically involves cAMP production, activation of PKA, and phosphorylation of target transcription factors (TFs). The GATA TFs have recently emerged as a novel family of regulators of gonadal gene expression. Several target genes have been identified for GATA TFs including StAR, MIS, aromatase, inhibinb, and SF-1. Interestingly, the expression of most of these genes is regulated by trophic hormones. The downstream molecular effectors of these hormonal signals, however, have yet to be fully understood. Therefore, we tested the intriguing possibility that members of the GATA family, particularly GATA-4 (G4), may represent such effectors. To mimic cAMP-induced promoter activity, the PKA catalytic subunit was cotransfected in CV-1 fibroblasts along with G4 and different GATA-dependent gonadal promoters. The transcriptional potential of G4 on the StAR, aromatase, and inhibinb promoters was markedly enhanced by PKA but not PKC. PKA also greatly increased cAMP-dependent transcriptional activity in the SF-1 promoter, whereas G4/C/EBPβ synergism on the SF-1 promoter was strictly PKA-dependent. Taken together, these data suggest that G4 is a target for PKA. Using an in vitro kinase assay, we show that G4 is indeed phosphorylated by PKA. Moreover, CAMP treatment of MA-10 Leydig cells increases G4 DNA binding activity without affecting its expression level, suggesting that G4 phosphorylation alters its DNA binding properties. Thus, G4 constitutes a novel effector of hormone-induced gonadal gene expression. Supported by CIHR.
USE OF THE YEAST THREE-HYBRID SYSTEM TO ELUCIDATE TERNARY PROTEIN INTERACTIONS DURING MEIOSIS.
C.A. Kersten and S. E. Ravnik, Dept. of Cell Biology and Biochemistry, Texas Tech Medical Center, Lubbock, TX 79430

The cell cycle is tightly controlled by cyclins and Cdk5 which bind together and phosphorylate downstream target proteins. Little is known about the specific molecular role of cyclins and Cdk5 during the meiotic cell cycle as opposed to the events of meiosis. The meiotic cell cycle is controlled, in part, by cyclin A1 and its Cdk binding partner Cdk2fi. Since cyclin A1 (and hence the complex) is required for meiosis, we tested the hypothesis that the complex interacts with other proteins to carry out its biochemical function. Therefore, we used the yeast three-hybrid system as a means to further elucidate the role of the cyclin A1/Cdk2fi complex by determining which proteins interact in a ternary protein complex. Approximately 7 x 106 clones from a mouse testis cDNA library in the pGAD10 vector (Clontech) were screened using both mouse cyclin A1 + Cdk2fi expressed from the pBridge vector (Clontech) in the yeast strain AH109. Potential interactors will grow on nutrient selective media and turn blue in the presence of x- alpha galactosidase due to expression of conditional nutritional and reporter genes, respectively. To date, approximately 1600 clones have been isolated and further selected based on growth and x-alpha gal reactivity. Of these putative interactors, several have significant similarity to known proteins in the database. Of particular interest are 1) the 5' nuclear cap binding protein subunit 1 which may suggest a role for Cyclin A1/Cdk2fi in processing of specific meiotic mRNAs such as suggested for Cyclin E, and 2)the mouse SCF complex protein Skp1 which is involved in the protein degradation pathway. Continuing experiments include further characterization of these clones by biochemical binding studies such as immunoprecipitation, and expression analysis.

EXPRESSION AND INHIBITION OF RECOMBINANT GAPDS, THE SPERM-SPECIFIC ISOFORM OF GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE
WeiDong Qu1,3*, PL Magyar1*, K Miki2*, M Goto2*, DA O'Brien1 1Laboratories for Reproductive Biology, Dept of Cell & Developmental Biology, University of North Carolina, Chapel Hill, NC, 2NIEHS, NIH, Research Triangle Park, NC, 3 Dept of Environmental Health, Fudan University, Shanghai, China

GAPDS, a novel glycolytic enzyme in mammalian sperm, is tightly bound to the fibrous sheath and appears to be required for hyperactivated motility. Several studies indicate that sperm GAPDS is more sensitive to substrate inhibition than the isozone expressed in somatic cells (GAPD). We have expressed recombinant mouse GAPD and a truncated GAPD (tGAPD) as GST fusion proteins to compare activities and inhibition in vitro. The truncated form is 70% identical to GAPD and lacks only the N-terminus that anchors GAPDS to the fibrous sheath. Soluble fusion proteins were purified and GST was removed by thrombin cleavage. Western blots confirmed the size (36,000) and specific immunoreactivity of each isozone. Recombinant GAPD and tGAPDS had comparable activities in assays measuring reduction of the NAD cofactor, a-chlorohydrin, which is metabolized by sperm to a potent substrate inhibitor of GAPDS, had no effect on the recombinant is enzymes. Synthesis of an active metabolite, such as (S)-3-chloroalactaldheyde, will be required to compare substrate inhibition of GAPD and GAPDS. Adenine nucleosides that act as competitive inhibitors of NAD cofactor binding caused dose-dependent inhibition of both GAPD and tGAPDS. Inhibition of both isozenes was >65% at 10 mM ATP. However, ADP and cyclic AMP showed more marked inhibition of somatic GAPD compared to tGAPDS. Further analyzes of recombinant enzyme inhibition may identify new contraceptive strategies.

BINDING STUDIES OF THE MOUSE OUTER DENSE FIBER PROTEIN Tpx-1
D.M. Hickox*, D.M. de Kretser, M.K. O'Bryan* Monash Institute of Reproduction & Development, Monash University, Melbourne, Victoria, 3168, Australia

To fully understand the processes underlying fertilisation, the molecular mechanisms behind sperm tail function must be characterised. Towards this aim, the mouse gene, tpx-1, is currently under investigation. Tpx-1 encodes a 1.6 kb transcript which is translated into a protein of 25kDa and 27kDa and is localised to the acrosome and the outer dense fibers of the sperm tail. Tpx-1 has been implicated in Sertoli cell - germ cell adhesion and is a member of the cysteine-rich secretory protein (CRISP) family. CRISPs are found in various cell types, including several secretory glands and T cells. Characterisation of tpx-1 will offer an increased understanding of both sperm function and CRISP biology as a whole, having relevance to both infertility and contraceptive research.

Towards determining the function of tpx-1, a yeast two-hybrid approach has been taken. The region coding for the mature tpx-1 protein was used as bait to screen a testis expression library. One hundred and fifty two yeast colonies expressing putative tpx-1 binding partners have been detected. Of these positive clones, several represent duplicates and previously unidentified cDNAs. Four putative interacting proteins have been selected for further characterisation: MS1-1, RANBP-9, basigin and a novel CRISP we have named CRISPY. Preliminary data provides evidence for the co-expression of these proteins with tpx-1, both temporally and locally. Protein binding will be confirmed using co-immunoprecipitation studies, which are in progress. The combination of molecular biological and biochemical approaches will provide further support for interaction between tpx-1 and these proteins and will also provide insight into the role of tpx-1 in sperm function and/or development.
THE CYSTATIN-RELATED EPIDIDYMAL SPERMATOGENIC (CRES) PROTEIN IS AN INHIBITOR OF THE PRO-HORMONE PROCESSING SERINE PROTEASE PC2. G.A. Cornwall, I., A. Cameron*, I. Lindberg*3, D. Hardy*1, and N. Hsia*1
Texas Tech University Health Sciences Center, Lubbock, TX., 2
THE CYSTATIN-RELATED EPIDIDYMAL SPERMATOGENIC (CRES) PROTEIN IS AN INHIBITOR OF THE PRO-HORMONE PROCESSING SERINE PROTEASE PC2. G.A. Cornwall, I., A. Cameron*, I. Lindberg*3, D. Hardy*1, and N. Hsia*1
Texas Tech University Health Sciences Center, Lubbock, TX., 2

Texas Tech University Health Sciences Center, New Orleans, LA. We previously established that the CRES protein defines a new subgroup in the Family 2 cystatins of cysteine protease inhibitors. However, CRES lacks two of the three sequence motifs necessary for cysteine protease inhibition and thus may not function as a classic cystatin. Furthermore, unlike the ubiquitous expression of the cystatins, CRES expression is limited to the proximal caput epididymidis, round spermatids, and the anterior pituitary gonadotrophs. We tested whether recombinant CRES protein functions as a protease inhibitor and inhibits the hydrolysis of Z-Phe-Arg-MCA by the cysteine proteases papain and cathepsin B. As expected, cystatin c was a potent inhibitor of both papain and cathepsin B, but CRES showed little to no inhibition of the two proteases. Because CRES protein is present in the pituitary gland, a site of high levels expression of prohormones and PC2, we next tested whether CRES inhibits the serine protease PC2. In contrast to cystatin c which showed little inhibition of PC2, CRES exhibited a dose-dependent inhibition of Pyr-Arg-Thr-Lys-Arg-MCA hydrolysis by PC2. Kinetics of inhibition by CRES were mixed-type with nanomolar K_i and predominantly competitive inhibition at lower CRES concentrations. CRES did not inhibit other serine proteases including trypsin nor the prohormone processing enzymes PC1 and furin. We conclude that CRES preferentially inhibits PC2 in vitro and suggest that CRES is an endogenous inhibitor of PC2 or PC2-like proteases.

POTENTIAL ROLE OF A NA+/HCO3- COTRANSPORTER IN MOUSE SPERM CAPACITATION. I. Demarco1, F. Espinoso2, J. Sosnak1, J. Hockensmith3, G. S. Kopf4, A. Darszon2 and P. E. Vicicomi1, Department of Cell Biology (1) and Biochemistry and Molecular Genetics (3), Univ. of Virginia. Charlottesville, Va; Department of Genetics and Molecular Physiology, Institute of Biotechnology, UNAM. Mexico (2); Center for Research on Reproduction & Women's Health, Univ. of Pennsylvania, Philadelphia, Pa (4). Mammalian sperm acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes occurring in the female reproductive tract that renders the sperm able to fertilize constitute the phenomenon of "sperm capacitation. Capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins. This increase, as well as the process of capacitation itself, is regulated by a HCO3-/cAMP-dependent pathway involving protein kinase A (PKA). Zeng et al. (1995) reported that capacitation is accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenyl cyclase, HCO3- might also have a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO3- but not Cl- induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO3---dependent hyperpolarization was not observed when Na+ was replaced by the non-permeable cation choline+. Replacement of Na+ by choline+ also inhibited the capacitation-associated increase in protein tyrosine phosphorylation. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation media. Both the lack of a hyperpolarizing HCO3- current as well as the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na+ suggest that a Na+/HCO3- cotransporter is present in mouse sperm and is coupled to events regulating capacitation.

PDC-109 ENABLES EPIDIDYMAL BULL SPERM TO BIND TO OVIDUCTAL EPITHELIUM. TM Gwathmey, GG Ignotz*, SS Suarez; Dept Biomedical Sci, Cornell Univ, Ithaca, NY 14853
After insemination, mammalian sperm are sequestered in the oviduct by binding to its mucosal epithelium. Sequestration of sperm in this reservoir evidently serves to maintain their fertility until ovulation occurs. Sperm bind to the epithelium via a lectin on the plasma membrane overlying the acrosome. In cattle, the sperm lectin binds to a fucosylated molecule on the epithelial surface. We identified the bull sperm lectin as PDC-109, a secretory protein of the seminal vesicles. Because sperm do not encounter PDC-109 until exposure to seminal plasma, we investigated whether epididymal sperm would bind to oviductal epithelium, and, if not, would addition of PDC-109 confer binding ability. Explants of epithelium, pooled from oviducts of 3 cows, were prepared just before each experiment. They consisted of irregular balls of epithelium, with cilia beating on the outer surface. Sperm were flushed from the caudal epididymis, washed in TALP medium, incubated in 250 µg/ml PDC-109 or TALP alone for 20 min, washed again, and added to explants. Washed ejaculated sperm were used as a positive control for binding. Binding was measured as the number of sperm per 0.1 mm sq of explant surface. Fewer epididymal sperm bound to explants (p < 0.01; mean +/- SEM: 6 +/- 1.7) than did ejaculated sperm (34 +/- 6.5). However, addition of PDC-109 to epididymal sperm increased binding density (33 +/- 4.5) to that of ejaculated sperm. Furthermore, epididymal sperm membrane extracts were subjected to polyacrylamide gel electrophoresis and western blot analysis with antibody to PDC-109. A 16.5 kDa protein labeled by anti-PDC-109 was detected in ejaculated, but not epididymal, sperm extracts. These results indicate that PDC-109 confers on epididymal sperm the ability to bind oviductal epithelium. USDA grant 2001-35203 11132

THE NICOTINIC ACETYLCHOLINE RECEPTOR IS INVOLVED IN THE ZP3-INITIATED ACROSOME REACTION OF HUMAN SPERM. Chris Bray, Jung-Ho Son and Stanley Meizel. Department of Cell Biology and Human Anatomy, School of Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616-8643
Previously, work from this laboratory has shown that two neuronal receptor/channels, the glycine receptor and the GABAA receptor were involved in the mammalian sperm acrosome reaction (AR) initiated by the egg zona pellucida (ZP) and progesterone respectively. In the present report, we present the first data suggesting that another neuronal receptor/channel, the nicotinic acetylcholine receptor (nAChR) is involved in the human AR initiated in vitro by a purified recombinant human ZP protein, ZP3 (rhZP3) expressed in CHO cells. In a recent report, we were able to demonstrate that rhZP3 possesses biological activity as it is able to rapidly stimulate the AR in capacitated human sperm. Preincubation of capacitated human sperm with the highly specific nAChR antagonist alpha bungarotoxin (100 nM) significantly inhibited the AR initiated by rhZP3 (n = 6, p <0.05) but not AR initiated by the calcium ionophore ionomycin (n =3) or progesterone (n =4). Sperm viability and motility were not affected by alpha bungarotoxin. Acetylcholine (10 µM) significantly initiated the human AR, (n =4), and alpha bungarotoxin (100 nM) significantly inhibited that initiation (n =5). These results suggest ion flux via the nAChR is important to the human AR initiated by the ZP. Research supported by NIH grant 33369 to S.M. The rhZP3 was a generous gift from Dr. J. D. Harris.
SPERM PROTEASOMES ARE INVOLVED IN HUMAN FERTILIZATION.

P. Morales, M. Kong*, C. Paisten*, E. Pizzaro*, Faculty of Health Sciences, University of Antofagasta. Antofagasta, Chile.

Fertilization in mammals comprises the sequential interactions of the sperm with the cumulus oophorus, zona pellucida (ZP), and oocyte plasma membrane. Here we report the presence of proteasome activity in human sperm and its participation during the fertilization process. Sperm proteasome activity was measured using the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC in the presence or absence of different concentrations of the inhibitor clasto-lactacystin (beta)-lactone. The participation of proteasomes during sperm-ZP binding, ZP- and progesterone- (P) induced acrosome reactions (AR), and P-induced Ca2+ influx was also evaluated. Motile sperm, obtained through a Percoll gradient, were incubated in modified Tyrodes medium (2.6% BSA) at 37 °C and 5% CO2. Sperm-ZP binding was evaluated using the hemizona assay; ZP-induced AR was evaluated incubating several ZP with sperm for 1 min. Some zona were then fixed (pulse); the rest were transferred to a sperm-free drop and incubated for 30 min (chase). Sperm-ZP bound after chase and pulse were evaluated for AR. P-induced AR was evaluated incubating overnight capacitated sperm with 6.9 µM P for 15 min. Some zona were then fixed (pulse); the rest were transferred to a sperm-free drop and incubated for 30 min (chase). Sperm-ZP bound after chase and pulse were evaluated for AR. P-induced AR was evaluated incubating overnight capacitated sperm with 6.9 µM P for 15 min. AR was scored using the supravital dye Hoechst 33258 and the PSA-FITC lectin. Ca2+ influx was evaluated using fura-2AM and a spectrofluorometer. Results indicated that intact as well as sperm extracts possess proteasome activity, susceptible to inhibition by lactacystine; sperm-ZP binding was not inhibited by lactacystine; and both ZP- and P-induced AR was inhibited by lactacystine. Preliminary data suggest that P-induced Ca2+ influx was also inhibited by lactacystine. In conclusion, human sperm proteasomes are involved in the exocytosis of the acrosome, perhaps in events upstream of Ca2+ influx. FONDECYT 101051.

CHARACTERIZATION OF UNIQUE TRANSCRIPTION OF GERM CELLS FROM THE MOUSE TESTIS WITH THE USE OF AFFYMETRIX GENECHIPM ARRAYS.

D.J. McLean*, D.J. Pouchnick*, P.J. Friel*, J.R. McCarre2*, M.D. Griswold. Center for Reproductive Biology, Washington State University, Pullman, WA and Department of Biology, University of Texas at San Antonio, San Antonio, TX. We have used Affymetrix GeneChip™ oligonucleotide arrays to characterize the gene expression in several specific cell types of the testis. Testicular cell types from outbred Swiss (CD-1) mice include primitive type A spermatagonia and primitive Sertoli cells from 6-day old mice, type A and type B spermatogonia from 8-day old mice, and pachytene and round spermatids from adult mice. Total RNA from each sample was used to generate target to probe MGU74Av2 gene arrays containing probe sets for approximately 12,000 genes. The percentage of GeneChip™ genes expressed was as follows: type A spermatogonia-37.2%, type B spermatogonia-42.9%, pachytene spermatocytes-28.5%, round spermatids-34.2% and Sertoli cells-37.6%. Genes such as lactate dehydrogenase C and transition protein 1 had high expression patterns in pachytene spermatocytes but not type A spermatagonia. Similarly, type A spermatogonia had high expression of genes associated with extracellular matrix binding such as laminin while round spermatids had high expression of sperm tail genes. Comparison analysis demonstrated that type A spermatogonia expressed 1221 unique genes when compared to pachytene spermatocytes and round spermatids. Likewise, pachytene spermatocytes expressed 320 unique genes and round spermatids expressed 372 unique genes. Further analysis will focus on identifying and verifying the expression patterns of novel genes associated with specific cell types of the testis to utilize this technology in an approach to identify contraceptive targets. Supported by HD10808 from NICHD.

INJECTION OF SPERM NUCLEAR HALOS INTO OOCYTES RESULTS IN NORMAL PATERNAL PRONUCLEI CHROMOSOMES. Isaac Mohar*, Monika A. Szczegiel*, and W. Steven Ward*. Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI.

Mouse sperm nuclei extracted with 2 M NaCl and 10 mM dithiothreitol to remove the protamines and histones retain their overall morphology, but lose all elements of chromatin structure except the organization of DNA into loop domains. These loops are attached at their bases to the structural element of the sperm nucleus, the nuclear matrix. The DNA appears as a halo surrounding the sperm nucleus as the DNA loops extrude from the nucleus and have been called nuclear halos. We have suggested that this sperm DNA loop domain organization is required for embryogenesis, and have developed a technique to inject mouse sperm nuclear halos into oocytes to test this hypothesis. Here, we report that sperm nuclear halos can decondense properly, form pronuclei, and that these pronuclei have normal chromosomes in 32% of the injections. These data suggest that sperm nuclear halos retain all the information necessary for normal chromosomal organization, and that microinjection of sperm nuclear halos can be accomplished without damaging the DNA. When eggs were allowed to develop in vitro, none of the nuclear halo injected oocytes developed to blastocysts. It is not clear whether this is because of a technical problem yet to be solved, or an indication that other chromatin structures that are destroyed by the 2 M NaCl extraction are also required for development. However, the data do indicate that it is possible to microinject sperm nuclear halos without damaging the DNA. This is remarkable given that in sperm nuclear halos most of the DNA is completely devoid of protein and is essential naked as loops extruding from the nuclear matrix.

AN INITIAL PROFILING OF MESSENGER RNA EXPRESSION FROM MICRODISSECTED STAGE-SPECIFIC TUBULES BY OLGONUCLEOTIDE ARRAY T.B. Guo*, J. Toppari, W.A. Salameh, Dept. of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA and Dept. of Physiology, Univ. of Turku, Turku, Finland.

Transcriptional changes in a given biological process can be studied by use of DNA array technology. Though gaining acceptance, this technology has yet to be widely applied to the testis, partly due to its intrinsic extraordinary heterogeneity of cell types and their stages of development. The meiotic transcriptional program in budding yeast has been characterized by array experiments. Genes were grouped based on their temporal expression patterns during meiosis. In trying to understand meiosis initiation in mammals, i.e. signals that govern the progression from type B spermatogonia to preleptotene spermatocytes, we have prepared RNA samples from stage-specific adult mouse seminiferous tubules by transilluminant-assisted microdissection. Here we describe our initial oligonucleotide microarray experiment to compare the mRNA expression changes between stages V and VII. Affymetrix arrays were processed according to manufacturer's specifications and were analyzed by the GeneChip software. The staining intensities were comparable and the background was low. Housekeeping genes like bactin, GAPDH, cyclophilin, all were abundantly expressed and constant. Out of 6500 probe sets, a vast majority did not change significantly, but 221 (3.4%) were judged to have increased expression levels from stages V to VII and 624 (9.6%) were decreased. Overall, the gene expression patterns and levels agree well with the literature. For example, some postmeiotic genes such as transition proteins and Hsc70 were increased. SCP2, also described in the yeast array, was moderately expressed. Components of Wnt pathway were upregulated. Using a similar approach, these results will be substantiated in a developmental study.
HYPOSPERMATOGENESIS: CAN WE BLAME THE CALCIUM CHANNEL?

Our Affymetrix Genechip studies indicated that pro-apoptotic genes in tests of Sprague-Dawley rats are up-regulated compared to controls when given drinking water containing 0.3% lead acetate for 1 week. TUNEL assay confirmed that apoptosis in seminiferous epithelium correlated with lead intake (P < 0.04).

Lead often competes for calcium binding sites. Modulation of intracellular calcium through L-type voltage-dependent calcium channels (L-VDCC) effects apoptosis in neural, pancreatic, cardiac and prostatic tissues. In brain, this mechanism involves, at least in part, altering splicing of calcium transporters (Guilarte et al., Mol Brain Res 76:289-305, 2000) under the control of calcium/calmodulin-dependent protein kinase type IV (CaMK IV)-responsive RNA elements (Xie and Black, Nature:410:936-9, 2001). We have observed L-VDCC mRNAs are deleted in exons 7 and/or 8 (responsible for metal ion sensitivity) in ~70% (25/36) of tests biopsies of men with non-obstructive azoospermia (NOA).

The goal of this study was to determine the plausibility of a mechanistic connection between ion channel structure and lead-induced apoptosis leading to hypospermogenesis.

We probed lead levels, apoptosis and L-VDCC mRNA sequence (by RT-PCR) in human NOA (n=14) tests biopsies, using obstructive azoospermia (OA; n=3) controls. Elevated testicular lead levels correlated with presence of deleted L-VDCC transcripts (Figure 1). + = full length L-VDCC; - = deleted; also elevated testicular apoptosis with deleted L-VDCC transcripts (Figure 2). Tests L-VDCC mRNAs contained CaMK IV splicing signals. Immunocytochemistry indicated that both full-length and deleted transcripts encoded L-VDCC antigenic epitopes that localized to plasma membranes of seminiferous epithelium. L-VDCC proteins regulated as per our mechanism are appropriately expressed on the cell surface. These data suggest that alteration of calcium homeostasis is an important intermediary step in various forms of hypospermogenesis. [Supported by NIEHS/NIH Grant Nos. ES 08100 and ES 10498 to SB].

THE TFIH BASAL TRANSCRIPTION COMPLEX IS ABUNDANTLY EXPRESSED DURING MEIOSIS IN THE MOUSE TESTIS.

Cell cycle passage requires the activity of cyclin/Cdk complexes. For full kinase activity, the Cdk subunit must be phosphorylated by another cyclin/Cdk complex made up of Cyclin H/Cdk7. Cyclin H and Cdk7 also functions in transcriptional regulation by interaction with the TFIH basal transcription factor complex and phosphorylation of RNA polymerase II. During our studies of cyclin H and Cdk7 during meiosis, we observed that these proteins are abundant in male mouse germ cells undergoing meiosis, similar to other proteins involved in basic transcriptional mechanisms, such as RNA polymerase II and the TATA Binding Protein. This is in contrast to mitotic cells, where Cdk7 levels and activity decline at M-phase. Since cyclin H and Cdk7 function as integral members of the TFIH complex in mitotic cells, we have examined the meiotic expression of MAT-1, p26, and p89, other components of the TFIH complex. Our analysis of mRNA and protein expression reveals that, like Cyclin H and Cdk7, TFIH components are abundantly expressed in male meiotic germ cells and show an increase in the expression levels as germ cell development proceeds. Our data, along with other published reports suggests that overexpression of components of the basal transcription machinery play a key role in maintenance of gene transcription during spermatogenesis. [Funded in part by the South Plains Foundation and NICHD].

CHARACTERIZATION OF THE ROLE THAT RAR-alpha PLAYS IN SPERMATOGENESIS BY EXAMINATION OF THE RAR-alpha KNOCKOUT MICE.
T.J. Doyle*, K.W. Braun*, D McLean*, Patricia Shane*, M.D. Griswold, K.H. Kim, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA.

Retinoic acid (R-alpha) has been shown to be necessary for spermatogenesis. An essential mediator of RA action in the testis is the retinoic acid receptor a (RAR-alpha). RAR-alpha knockout (KO) male animals are sterile. RAR-alphaKO testicular morphology shows varying degrees of degeneration, from seminiferous tubules completely degenerated and void of germ cells, similar to the testicular morphology of vitamin A-deficient animals, to seminiferous tubules that have a full complement of germ cells. However, RAR-alpha protein expression was not detected in the testis of KO animals by Western blot and immunohistochemical analysis.

Epidermal growth factor KO animals were 10% of the number found in the epididymis of wild type animals. To investigate the possible mechanism of germ cell loss, analysis was performed to detect apoptotic cells. There was an increase in the number of germ cells undergoing apoptosis in the testis of KO animals when compared to that in wild type animals. These results suggest that RAR-alpha expression in the testis is necessary for increased survival of germ cells. To investigate whether RAR-alpha in the germ cells was important for their survival, we used spermatogonial transplantation technique. Wild type germ from C57/Bl Rosa mice were injected into the testis of RAR-alpha KO recipient animals, followed by a 130-day recovery period. Immunostaining for RAR-alpha on the injected testicular sections revealed that seminiferous tubules were colonized and repopulated by Rosa germ cells. These results suggest that RAR-alpha in germ cells is important for increased survival of germ cells.
25

INHIBITION OF SPERM PRODUCTION IN MICE BY ANNEXIN V MICROINJECTED INTO SEMINIFEROUS TUBULES: A POSSIBLE ETIOLOGY OF PHAGOCYTIC CLEARANCE OF APOPTOTIC SPERMATOGENIC CELLS AND MALE INFERTILITY

Yuji Maeda*, Akiko Shiratsuchi*, Mikio Namiki and Yoshinobu Nakanishi*, Department of Urology, Kanazawa University School of Medicine and the Graduate School of Medical Science, Kanazawa University

Many differentiating spermatogenic cells die by apoptosis during the process of mammalian spermatogenesis. However, apoptotic spermatogenic cells are hardly detectable by histologically examining the testis, probably due to the rapid elimination of dying cells by phagocytosis. Previous in vitro studies showed that Sertoli cells selectively phagocytose dying spermatogenic cells by recognizing the membrane phospholipid phosphatidylserine (PS) exposed to the surface of spermatogenic cells during apoptosis. We examined here if PS-mediated phagocytosis of apoptotic spermatogenic cells is occurring in vivo. For this purpose, the PS-binding protein annexin V (AV) was microinjected into the seminiferous tubules of live mice, and their testes were histologically examined. The injection of AV caused no histological changes in the testes, but significantly increased the number of apoptotic spermatogenic cells as assessed by the TUNEL staining. The number of Sertoli cells did not change in the AV-injected testes, and AV itself did not induce apoptosis in primary cultured spermatogenic cells. These results indicated that AV inhibited the phagocytic clearance of apoptotic spermatogenic cells and suggested the occurrence of PS-mediated phagocytosis of those cells in vivo. Finally, the injection of AV brought about a significant reduction in the number of spermatogenic cells in the seminiferous tubules and of sperm in the epididymis under certain experimental conditions. This suggests that the elimination of apoptotic spermatogenic cells is required for the production of sperm.

26

SPERMATOGENESIS AFTER ORCHIECTOMY ALONE TREATMENT FOR NON-SEMINOMA STAGE I TESTICULAR CANCER

V. Mamaladze, National Cancer Center, Tbilisi, Georgia

OBJECTIVE: To review patterns of spermatogenesis in a long-term follow-up of pts. with stage I non-seminoma testicular cancer treated by orchietomy alone and to assess correlation between spermatogenesis recovery and FSH level. MATERIAL AND METHODS: From 1983 to 1996, 54 pts. with stage I non-seminoma testicular cancer treated by orchietomy alone who were disease-free were analyzed by the requirement of pre- and posttreatment sperm count (SC), Sperm morphology, motility, penetration of the spermatozona and FSH level. Sperm characteristics were assessed at the baseline, 1 year and >=2 years after orchietomy, using conventional methods. SC were classified as normo- (NS ≤10x10^6/ml), oligo- (OS ≤50x10^6/ml) or azoospermia (AS ≤1x10^6/ml). Serum FSH level was analyzed by radioimmunoassay. The mean value of two samples from each pts. was used. Median follow-up time was 42 months. The chi-square and logrank tests were used for statistical analysis.

RESULTS: At baseline 29 pts. (54%) were NS, 14 (26%) were OS and the remaining 11 pts. (20%) were AS. During follow-up of 1 year the number of NS pts. increased to 42 (78%) (p<0.05). The mean sperm count was increased from 22 to 34x10^6/ml during the same period of time (p<0.05), without any statistically significant increase after 2 years. There were no significant differences among other parameters of the sperm analyzes. The FSH level was in correlation with SC recovery. Mean SC increased significantly in 46 pts. with the normal FSH values, whereas there was no increase in the same parameter on the elevated baseline FSH pts. (p<0.05). CONCLUSION: Our data suggest that spermatogenesis recovery is noted within 1 year after orchietomy alone for stage I non-seminoma testicular cancer and recovery is highly associated with serum FSH level.
IDENTIFICATION OF RETINOIC ACID INDUCED GENES IN MOUSE TESTIS BY CDNA MICROARRAY ANALYSIS

Asa J. Oudes1, John C. Rockett2, David J. Dix2, and Kwan Hee Kim1*
1School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164.
2United States Environmental Protection Agency, Research Triangle Park, NC 27711.

Vitamin A is essential for spermatogenesis. A deficiency of dietary vitamin A has been shown to cause a loss of germ cells and reproductive dysfunction in mammals. The action of vitamin A is mediated by retinoid receptors, which are ligand-dependent transcription factors. One of the retinoid receptors, retinoic acid receptor alpha (RAR-alpha), is critical for spermatogenesis. RAR-alpha knockout mice are sterile and suffer from reduced viability. We hypothesize that many genes vital to testis function are regulated by RAR-alpha. Thus, it is important to identify and characterize the genes that RAR-alpha controls in the testis.

A mouse testis cell line (MSC-1) and testis from vitamin A-deficient (VAD) mice were used to produce pools of mRNA that have enhanced or repressed levels of RAR-alpha controlled gene expression. mRNA products from MSC-1 cells were converted to cDNA by reverse transcription and hybridized with two cDNA microarrays, one mouse testis specific and the other general mouse cDNA. Analysis of cDNA arrays revealed the expression of Seven in Absentia-1a (SIAH-1a) and T-cell Death Associated Antigen-51 (TDAG51) were increased in MSC-1 cells with retinoic acid treatment. Realtime PCR assays of cDNA derived from the testis of VAD mice treated with retinol confirmed that retinoids enhance the expression of SIAH-1a and TDAG51 in vivo. Finally, the protein expression pattern of SIAH-1a and TDAG51 in VAD and normal mouse testis was determined by immunohistochemistry.

INVolMENT OF GGA IN THE LYSOSOMAL TRANSPORT OF PROSAPOsin; A PROTEIN EXPRESSED IN SERTOLI CELL

Stephane Lefrancois, Ahmed J. Hassan and Carlos R. Morales
Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada

Proteins destined for the lysosomes use two well-known transport mechanisms. Soluble proteins such as cathepsin B use the mannose 6-phosphate (M6P) receptor, which in turn interact with GGA while integral membrane proteins such as LAMP-2 interact with AP-3. GGA and AP-3 recruit clathrin that causes the formation of vesicles that are targeted to the lysosomal compartment. Prosaposin is a soluble lysosomal protein that does not use the M6P receptor and cannot directly interact with AP-3. However, we hypothesize that through a novel receptor, prosaposin must use either the GGA or AP-3 mechanism to be packaged into clathrin coated vesicles to target the lysosomes. In this study, we examine COS-7 cells transfected with a dominant negative construct for GGA along with a human fibroblast cell line that is deficient in AP-3. Cells were grown either on cover slips for confocal microscopy or embedded in Lowicryl for electron microscopy and immunostained with prosaposin, cathepsin B, or LAMP-2 antibody. Our results show that prosaposin is absent from lysosomes of cells that were transfected with a dominant negative construct of GGA, but present in the lysosomes of AP-3 mutant cells. This suggests that prosaposin must interact with an unknown receptor that in turn binds GGA, which recruits the necessary components to form a clathrin coated vesicle to target prosaposin to the lysosomal compartment. (Supported by CIHR)
SERTOLI CELL NUMBER INCREASES MARKEDLY DURING INFANCY IN THE RHESUS MONKEY, BUT TO A LESSER EXTENT THAN THAT DURING PUBERTY IN THIS SPECIES.

D.R. Simorangkir, T.M. Plant and G.R. Marshall, Department of Cell Biology and Physiology, and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA

We have previously established that puberty in the rhesus monkey is associated with a 6-fold increase in Sertoli cell (SC) number that is driven by the elevation in gonadotropin secretion occurring at this stage of primate development (Marshall and Plant, Biol Reprod 54:1192, 1996). SC proliferation also occurs prior to puberty in this species, but it remains to be determined whether the increase in SC number during this phase of development is restricted to the first few months of life, when, as at the time of puberty, robust LH and FSH secretion is occurring. In order to clarify this issue, 4 newborn (<2 days of age) and 4 infantile (4-5 months of age) males were castrated 2 hr after receiving an iv injection of BrdU. Tissue was fixed in Bouin's and SC numbers were estimated using standard histomorphometry, and expressed as SC number/testis (mean ± SD). The number of SC was 4-fold greater (p<0.05, Student's t test) in infants (156±121 x 10⁶) than in newborns (42±12 x 10⁶). These values may be compared to those previously reported by us for juvenile (approximately 15 months old) and fully adult males of 286±121 x 10⁶ and 1780±452 x 10⁶, respectively.

From the foregoing results, we conclude that SC proliferation during prepubertal development in the rhesus monkey occurs predominantly during infancy, when gonadotropin levels are elevated. Nevertheless, in this higher primate, the pubertal phase of development, which occurs several years after birth when gonadotropin secretion is reestablished, contributes the greatest increase to the final complement of SC in the adult testis. Supported by HD08610.

ISOLATION AND FUNCTION OF ADULT RAT SERTOLI CELLS.

Much of what we know of adult Sertoli cell regulation and function has come from in vitro studies of immature cells and from manipulation in vitro. However, many Sertoli cell functions are regulated by conditions that are difficult to replicate in vitro. Our objective was to adapt methods to isolate Sertoli cells rapidly and purely enough to make it possible to treat rats in vivo and then assess Sertoli cell function immediately after their isolation. Testes were first dispersed in collagenase followed by trypsin digestion and then in collagenase/hyaluronidase/DNase/trypsin inhibitor. The dispersed cells were then subjected to hypotonic shock and then filtered through nylon mesh filter. This procedure takes approximately 4 hours. From a single testis, we obtain 4 - 8 million Sertoli cells, with an average yield of about 6 million/testis. The purity, determined by morphological analysis of plastic-embedded cells or after staining for tyrosine-tubulin, ranged from 70-90%. The contaminants typically included intact germ cells (5%), myoid cells (5%) and ruptured cells (5%). Protamine 2 mRNA was not detected in the Sertoli cell preparations, but SGP-2, transferrin, espin, tsx, and cox-1, all Sertoli cell-specific genes, are highly expressed. As expected, age and LH-suppression did not result in changes in Sertoli cell SGP-2 mRNA. In contrast, transferrin mRNA was expressed in young adult rats, increased at age 20 months, and decreased after LH suppression (8 wk, testosterone-estradiol implants). These results suggest that it will be possible to experimentally manipulate Sertoli cells in vivo and then isolate the cells quickly and purely enough to study the effects of experimental manipulation without culturing the cells after their isolation. Supported by NIH grants AG08321 and US4-HD36209.

CYCLINS EXPRESSION IN SOMATIC CELLS OF THE TESTIS IN NEONATAL WISTAR RATS

F.M. Pereira*, G.C. Bregunci*, G.D. Cassalt*, R.A. Hessl, L.R. França; Dept. of Morphol., Federal University of Minas Gerais, Belo Horizonte - MG - Brazil - 31270-901. I University of Illinois, Urbana-Champaign, USA.

Eukarotic cell proliferation involves an orderly sequence of events that results in the duplication and division of all cell components. In this process, the cyclin-dependent kinases (CDKs) play an essential role in the regulation of cell proliferation, being activated during specific phases of cell cycle. Although it is well known that Sertoli cell proliferation that occurs during testis development is regulated by FSH and thyroid hormones, there are few data in the literature concerning the type of cyclins involved in Sertoli cell division. In this regard, the main objective of the present study was to investigate the expression of different cyclins in Sertoli cells of Wistar rats, during the period these cells are proliferating actively. Testes from four day old rats were fixed in 2% paraformaldehyde for 2h, and routinely embedded in paraplast. Sections with 4-5µm in thickness were obtained to perform immunocytochemistry detection of cyclins A, B1, D1, D2, and D3, utilizing specific monoclonal ab (LabVision, Neomarkers, CA). Except for D3 cyclin, Sertoli cells in young rats were labeled for all other cyclins investigated. However, the percentage of cells labeled for each cyclin investigated showed high variation, being approximately 30% for D1, 15% for D2, 10% for A, and 5% for B1. Additionally, it was observed that peritubular myoid cells and mesenchymal cells (presumably Leydig cell precursors) showed labeling for all cyclins investigated. The present study is the first to perform a more detailed investigation of cyclins expression in somatic cells of the testis in rats, during the early period of postnatal testicular development. Supported by Capes and NIH grant HD35126.
SITE-DIRECTED MUTAGENESIS OF THE STAR PROMOTER REVEALS THE REQUIREMENT OF MULTIPLE C/EBP AND GATA ELEMENTS FOR PKA-DEPENDENT SYNERGY BETWEEN GATA-4 AND C/EBPD. F. Hamel*, J.J. Tremblay, R.S. Viger, CHUL Research Centre, Laval University, Quebec, PQ, Canada. Steroidogenic acute regulatory protein (StAR) regulates cholesterol transport in steroidogenic tissues. StAR gene expression is induced by trophic hormones predominantly through cAMP production and activation of protein kinase A (PKA). Several transcription factors (TFs) are known to regulate the StAR promoter such as SF-I, C/EBP, and GATA-4 (G4). Although these TFs are key regulators of basal StAR promoter activity, how these factors are integrated as downstream effectors of the hormone stimulatory signal remains poorly understood. We have recently shown that PKA enhances G4-mediated activation of the StAR promoter and that synergy between G4 and C/EBPβ is strictly PKA-dependent. The StAR promoter contains one GATA and two C/EBP elements. To determine which elements are required for PKA-dependent synergy between G4 and C/EBPβ, we performed deletion analyses and site-directed mutagenesis. Mutation of the GATA element abolished G4-mediated activation and PKA-dependent synergy with C/EBPβ, highlighting the strict requirement for this element. Deletion or mutation of the distal high affinity C/EBP element abrogated PKA-dependent synergy, indicating that the distal C/EBP element is essential and the proximal low affinity C/EBP element is not. Interestingly, mutation of the distal C/EBP element into a GATA element restored PKA-dependent synergy. This suggests that the low affinity C/EBP element, although not sufficient, nonetheless contributes to hormone-induced StAR promoter activity. This contribution, however, appears to require stabilization by neighboring DNA-bound proteins. Thus, the level of C/EBPβ and phosphorylation of G4 likely act as signals for acute StAR expression.

TUMOR NECROSIS FACTOR-α FACTOR INDUCES NEUROPHIL RECRUITMENT TO TESTICULAR VENULE CHARACTERIZATION OF SIGNALING PATHWAYS. Jeffery J. Lyssak and Terry T. Turner, Departments of Cell Biology and Urology, University of Virginia, Charlottesville VA 22908 Ischemia-reperfusion (IR) of the murine testis results in germ cell-specific apoptosis (GCA). Previous studies from this laboratory have demonstrated that testicular IR-induced GCA is dependent upon the recruitment of neutrophils to subcutaneous venules of the testis. Recent studies have also shown that there is an increase in the proinflammatory cytokine tumor necrosis factor (TNF)-α lesion molecule, E-selectin, and activation of the stress-related kinase, c-jun N-terminal kinase (JNK) after IR of the murine testis. The present study was performed to determine if the increase in TNF-α expression observed after IR of the testis is involved in the cell signaling events leading to E-selectin expression and subsequent neutrophil recruitment to the testis. Mice were either given an intrascrotal injection of 500 ng TNF-α or vehicle alone and sacrificed at 1, 2, and 4 hours after injection for the removal of testes for histological examination and for protein isolation. Histological results revealed that TNF-αcaused an increase in neutrophil adhesion to subcutaneous venules. Preliminary results of western blot analyses indicate that total testicular JNK remains unchanged and phosphorylated JNK, the active form of the enzyme, is increased at 1 hr after TNF-α-alpha injection. These findings indicate that the increase in TNF-α-alpha observed after IR of the testis may stimulate neutrophil recruitment through a JNK activation pathway. Interestingly, NFkB activation is also known to be downstream of TNF-α-alpha signaling in other tissues. We will determine if NFkB is also involved in the stimulation of E-selectin after IR of the testis. Supported by RO1-DK53072 and an AFUD Fellowship.

TESTOSTERONE INHIBITS PRODUCTION OF 25-HYDROXYCHOLESTEROL IN TESTICULAR MACROPHAGES Yevgeniya O. Lukyanenko* and James C. Hutson. Texas Tech University Health Sciences Center, Lubbock, TX. Testicular macrophages reside in close association with Leydig cells and produce IL-1, IL-6, TNF α and 25-hydroxycholesterol, all of which influence Leydig cells. While the cytokines are generally thought to inhibit steroidogenesis, 25-hydroxycholesterol is readily converted to testoster one and thereby increases steroidogenesis. Macrophages produce a 25-hydroxylase that converts cholesterol to 25-hydroxycholesterol. Because most endocrine and paracrine mechanisms receive negative feedback, it was hypothesized that production of 25-hydroxycholesterol by testicular macrophages may be regulated by testosterone. This hypothesis was tested by measuring steady-state levels of 25-hydroxylase mRNA and production of 25-hydroxycholesterol by adult rat testicular macrophages treated with testosterone. We found that high concentrations of testosterone significantly inhibited 25-hydroxycholesterol production and steady-state levels of 25-hydroxylase mRNA after 24 hr. It was also found that LPS and 25-hydroxycholesterol itself also inhibited 25-hydroxycholesterol production. Preliminary studies indicate that the rate of degradation of 25-hydroxylase mRNA was not influenced by testosterone. These studies demonstrate that the production of 25-hydroxycholesterol by testicular macrophages is negatively regulated by testosterone suggesting the presence of a negative feedback regulatory loop for the paracrine interaction between macrophages and Leydig cells. This not only provides additional data concerning the regulation of this oxysterol at the molecular level but also supports the hypothesis that 25-hydroxycholesterol is involved in physiologically relevant processes. This finding further supports the concept that the interaction between macrophages and Leydig cells is physiologically relevant.
SEASONALITY OF CRYPTORCHIDISM AND HYPOSPADIAS IN GREECE: EPIDEMIOLOGICAL RELATIONSHIPS
Ch. Mowulakis, D. Demetriades, S. Antypas, N. Sofikitis (Dept of Pediatric Surgery, Aghia Sophia Children's Hospital, Athens, Greece)

OBJECTIVE: To examine seasonal trends of cryptorchidism and hypospadias in Greek population.

MATERIALS AND METHODS: Data on one thousand and one hundred seventy eight males with true isolated cryptorchidism and 542 with simple hypospadias born between 1991-1998 were received and analysed from three major paediatric centre databases. All 630,087 boys born during the same period of time were used as a comparison group. Seasonality by month of birth was evaluated using Edwards' model with adjusted frequencies and exact angles.

RESULTS: Cryptorchid and hypospadias births followed a monthly cyclic distribution during the year, well described by the equation of the simple harmonic oscillation (x² = 0.059 with 11 df, P<0.05 for cryptorchidism, x² = 0.1438 with 11 df, P<0.01 for hypospadias). The maximum and minimum incidence rate was observed in March and September respectively for cryptorchidism (x² = 0.1427 with 2 df, P<0.05), and between October/November and April/May respectively for hypospadias (x² = 0.068 with 2 df, P<0.05). Both the 3rd and the 1st trimester (crucial embryonic periods of the final testicular descent and the differentiation-development of the male urethra respectively) of cryptorchid and hypospadias gestations respectively showed a statistically significant incidence in winter.

CONCLUSIONS: Both congenital anomalies show a documented seasonal variation in Greece. Since both crucial embryonic periods of the final testicular descent and the differentiation-development of the male urethra are considered to be androgen-dependent, the existence of an androgen stimulator that follows a cyclic pattern of variation with a trough (diminished androgen production by the fetal testis) in winter may be speculated. Under these settings it could be hypothesized that the coincidence of the 1st or 3rd trimester of a potentially genetically influenced gestation with the winter period, could lead to the phenotypical expression of hypospadias or cryptorchidism respectively. ICGG is a possible example of such an androgen stimulator since it shows seasonal variation with lower levels in winter. Since no significant differences in daylight length are found among seasons in Greece, the detection of a statistically significant seasonal variation may suggest that factors other than light are involved in the pathogenesis of cryptorchidism and hypospadias. Seasonal alterations of weather temperature may be given as a possible example of an alternative cause contributing via the above described mechanism to the seasonal variations observed.

THE EFFECTS OF REPRODUCTIVE HORMONES ON COLocalIZATION OF CORTACTIN WITH F-ACTIN IN ISOLATED RAT SERTOLI CELLS
K. Wolski, J. Hushen*, D.F.Cameron; Department of Anatomy, University of South Florida College of Medicine, Tampa, FL

FSH results in peripheralization of F-actin in isolated rat Sertoli cells inducing "binding competency" of these cells. In coulture, testosterone stimulates round spermatid (step 1-8) attachment to Sertoli cells in a dose response fashion only when the Sertoli cells are binding competent. This priming effect of FSH appears associated with actin distribution by yet unknown mechanisms. Cortactin, an actin binding protein, localizes to the cortical cytoskeleton and has been shown to cross-link F-actin in vitro. It has been identified in the seminiferous epithelium in a pattern similar to actin distribution in Sertoli cells in vivo. The purpose of this study was to identify the presence of cortactin in isolated rat Sertoli cells, to determine its distribution pattern relative to F-actin, and to define the effects of reproductive hormones on its localization. The effects of FSH, DHT, testosterone, and estradiol were observed in Sertoli cell monolayers and Sertoli-germ cell cocultures plated on a Matrigel substrate. Cortactin was present in all Sertoli cells. FSH appeared to have an effect on cortactin localization, as it did on F-actin localization within the cell. Steroid reproductive hormones did not appear to result in a noticeable redistribution of either F-actin or cortactin. The localization of cortactin following induction of the actin-rich Sertoli-germ cell junctional complexes by round spermatids in coculture is currently under investigation. The inductive effect of FSH on Sertoli cell binding competency is associated with the peripheralization of F-actin, which may be regulated, in part, by cortactin distribution within the cell.

PROGESTERONE RECEPTOR EXPRESSION, LOCALIZATION, AND ACTIVITY IN RAT TESTES.

Human male contraceptive studies have demonstrated that the administration of combined testosterone (T) and progestin induces a more rapid suppression of spermatogenesis than with T alone. We hypothesize that progestins alone through progestosterone receptors (PRs) have direct actions on testes. Using the Sprague-Dawley rats (60 days old) as a model, we determined PR expression, localization, and binding characteristics in the adult testis. One testis from each animal was removed for progestin binding activity and PR protein expression by Western blotting. The contralateral testes were fixed by vascular perfusion with Bouin's solution, embedded in paraffin for determining PR localization by immunohistochemistry. The results show that there is specific binding of labeled progesterone to testicular cytosolic preparations. Progesterone, 17α-hydroxyprogesterone and pregnenolone displaced labeled progesterone from the testicular cytosol, whereas testosterone, estradiol and other synthetic progestins had no effect. Western blot analyzes show PR-A and PR-C expression is more abundant than PR-B in testes. Immunohistochemical analyzes indicate that PR-A is mainly localized intracellularly in pachytene spermatocytes, Sertoli and Leydig cells, and PR-C, a truncated form of PR-A and PR-B, is localized to cell membranes of round spermatids and intracellularly in pachytene spermatocytes. Moderate PR-C staining was observed in the somatic cells. We conclude that progesterone acting through PRs may have direct actions on spermatogenesis.

POTENTIAL ESTROGEN REGULATION OF HENSIN, AN EPITHELIAL TERMINAL DIFFERENTIATION GENE IN THE MALE REPRODUCTIVE TRACT
Qing Zhou, Qais Al-Awqati*, Rong Nie, Kay Carnes*, Dennis Lubahn*, Rex A. Hess 1 Dept Vet Biosci, Univ of Illinois, Urbana, IL 61802; 2Dept. Med/Physiol, Columbia University, NY; 3Biochemistry & Child Health, Univ of Missouri, Columbia, MO

The disruption of estrogen receptor alpha (ERα) gene in rodents resulted in fluid reabsorption defect in efferent ducts, dilution of sperm and male infertility. Our previous studies showed the epithelial lack of ERα has dramatic decrease in the microvillus border, the loss of apical endocytotic vesicles and the uptake of luminal fluid. It is obvious that the morphological and functional characteristics of terminally differentiated epithelial cells have been lost in these cells. Hensin, an extracellular matrix glycoprotein secreted by epithelium, was reported in many tissues to mediate the terminal differentiation of the epithelium. Here, we hypothesized that hensin is the gene mediating the estrogen actions in male efferent ducts for the final establishment of the highly polarized and differentiated epithelial cells. cDNA probes from CUB2 domain and J-UTR of hensin mouse homologue, CRP-ducin, were used to test the expression of this gene in adult male rat by Northern blot analysis. A 7 Kb product was detected in efferent ducts, epididymis, vas deferens and prostate in a high abundance, which share the same size of hensin intestine splice variant CRP-ducin. A 5Kb product that has same size as hensin testis splice variant ehemisin was also detected in efferent ducts. In 55-day ICI 172,780 treated adult rat, the expression of 7Kb product was decreased significantly. Our data suggested that there is an estrogen regulation on hensin expression in male reproductive tract. Further study need to be done to correlate the estrogen regulation of hensin gene and terminal differentiation of efferent ducts epithelium. Supported by NIH grant HD35126.
THE INITIATOR CASPASE 9 AND THE EXECUTIONER CAPSASES 3 AND 6 ARE INVOLVED IN GERM CELL APOPTOSIS FOLLOWING GONADOTROPIN DEPRIVATION IN RATS. G. Pulomeno*, A.P. Sinha Hikim, Y.H. Lee, V. Aiello*, C. Wang, R.S. Swerdloff, Department of Medicine, Harbor-UCLA Medical Center and REI, Torrance, CA.

Withdrawal of gonadotropins and/or intratesticular T induces germ cell apoptosis. The molecular mechanisms by which it does so are not well understood. The execution of most if not all apoptosis requires caspase activation. The purpose of the present study was to examine the possible involvement of the key initiator and executioner caspases 9 and 6 in dying germ cells. Groups of adult male rats were given a daily injection of vehicle for 14 days or GnRH antagonist (GnRH-A) for 2, 5, and 14 days. Germ cell apoptosis involving exclusively stages VII-VIII was achieved by day 5. Within the study paradigm, the highest number of dying cells occurred by day 14, at which time a modest but significant increase in the incidence of apoptosis was also noted at stages other than VII-VIII. Immunocytochemical analysis revealed increased expression of Bax as well as active initiator caspase 9 and the executioner caspases 3 and 6 in dying germ cells. Unlike our heat model, we found no redistribution of Bax or the active executioner caspase 7 to the perinuclear region of the apoptotic germ cells. These results suggest that: 1) withdrawal of gonadotropins and consequently intratesticular T induces germ cell apoptosis possibly via a mechanism involving the initiator caspase 9 and the executioner caspases 3 and 6 and 2) these executioners may play a non-redundant role in programmed germ cell death in a stimulus-specific manner. Our understanding of the cascade responsible for reversible loss of germ cells after gonadotropin deprivation may allow us to focus on specific targets for male contraceptive development. Supported by a grant from NIH (HD39293).

Expansion of triplet (CAG)n repeat sequences in the androgen receptor (AR) gene have been associated to a particular type of neurodegeneration in humans. The pathology, Spinobulbar muscular atrophy (SBMA) or Kennedy's disease, is an X-linked recessive disorder characterized by motoneuron loss. The repeat gives an elongated polyglutamine (polyGln) tract in the AR and confers a toxic gain-of-function to the mutant protein. Using immortalized motoneurones (NSC34) transfected with the wt or mutant ARs, we have shown that SBMA AR has a cytoplasmic diffuse distribution in transfected cells, which exhibits reduced growth/survival rate. After testosterone activation SBMA AR aggregates (cytoplasmic and nuclear inclusions) but cell viability increased; thus, cytoplasmic aggregates do not play a role in cell death. To analyse the possible toxic role of neurite aggregates on motoneuronal functions, we have co-transfected NSC34 with chimeric constructs of green fluorescent protein and either the SBMA AR (GFP-AR.Q48) or wtAR (GFP-AR.Q0) plus a blueFP containing a mitochondrial localization signal (mtBFP). We have found, that in motoneuronal cells with neurite aggregates the distribution of mitochondria is altered in neuronal processes. Confocal microscopy showed that the same cells have a marked reduction in f-actin polymerized fraction; they also show significant changes in cell morphology and in motor proteins involved in axonal transport. Thus, aggregates physically alter neurite transport and may deplete neuronal processes of factors/components important for axonal functions. Telethon (Italy) Grant 1283 and Italian Ministry of Health are acknowledged.
A MORPHOMETRIC ANALYSIS OF TESTICULAR FUNCTION IN SENESCENCE ACCELERATED MICE. N. Manabe*, Y. Akiyama*, M. Sugimoto*, M. Kiso*, K. Komatsu*, M. Shimabe*, M. Miyamoto*, Unit of Anatomy and Cell Biology, Department of Animal Sciences, Kyoto University, Kyoto 606-8502, Japan

The Senescence Accelerated Mice (SAM) are inbred strains derived from AKR mice and contain two related strains, SAM prone (SAMP) and SAM resistant (SAMR). The SAMP has a shorter lifespan and demonstrates accelerated aging. In this study, we examined age-related changes in testes in SAM mice by morphometry. During immature periods, the absolute numbers of spermatogonia, primary spermatocytes, spermatids, and Sertoli cells in SAMP were greater than those in SAMR. Significant differences were noted in number of spermatogonia at 6 weeks old, primary spermatocytes at 3, 5, and 6 weeks, round spermatid at 5 and 6 weeks old, Sertoli cells at 3 and 6 weeks old. Round spermatid in SAMP appeared earlier than in SAMR. In contrast, to immature period, these cell numbers in SAMP at 40 weeks old were less than those in SAMR at the same age, although it was not significant in Sertoli cell number. Downward trends in these parameters appeared in SAMP from 20 to 40 weeks old, while there were no significant changes in SAMR. The volume of seminiferous tubules in SAM was greater than that in SAMR at 5 weeks old but similar at advanced age. The absolute number and volume of Leydig cells in SAMP were larger than that in SAMR at 3 to 6 weeks old. While the number of Leydig cell in SAMP was not changed from 20 to 40 weeks in age, significant decrease was observed in volume of cells. This decrease was not noted in age-matched SAMR. Consistent with the changes in Leydig cell volume, plasma testosterone levels were higher in SAMP than that in SAMR at 4 to 6 weeks old and lower in SAMP at 40 weeks old. These results indicate that both maturation and deterioration of testes occur at earlier ages in SAMP than SAMR.

CALORIC RESTRICTION AFFECTS GENE EXPRESSION IN THE EPIDIDYMIS OF THE BROWN NORWAY RAT

Kathryn M. Jervis* and Bernard Robaire
Depts. Pharmacol. & Therap. and Ob/Gyn, McGill University, Montreal, Canada

The epididymis, the tissue where spermatozoa mature and are stored, undergoes profound, segment specific, biochemical and morphological changes with aging. While the mechanisms underlying aging of the epididymis are unclear, previous results suggest that oxidative stress may play a role. We used a caloric-restriction (CR) protocol to determine how manipulating oxidative stress levels affects aging of the epididymis. CR causes an extension of life span in many species and has been shown to attenuate both the age-related accrual of oxidative damage and the increased production of mitochondrial reactive oxygen species (ROS). Male Brown Norway rats were made caloric restricted; by 16 weeks onward they were sustained on 60% of caloric intake of ad libitum controls. At 12 months epididymides were collected (n=5), sectioned (initial segment, caput, corpus and cauda) and frozen. RNA was extracted, reverse transcribed, radiolabelled and used to probe cDNA arrays (n=5 arrays/segment, ClontechTM Rat-1.2 Atlas Array). Arrays were analyzed using GenespringTM software. The effect of CR was most pronounced in the corpus epididymides; the expression of 15 genes decreased and one increased. Many of the genes that decreased by two fold or more are involved in oxidative stress defences; copper-zinc-containing superoxide dismutase 1 (Cu-Zn SOD1), glutathione S-transferase (GST) subunit 7 pi, GST subunit 8, and GST subunit 4 mu decreased by 65%, 56%, 53% and 51%, respectively. Therefore, CR results in a segment specific reduction in the expression of those genes involved in oxidative stress defences. We speculate that CR-mediated decreased production of ROS results in a reduction in the expression of genes involved in oxidative stress defences in the epididymis. Supported by NIH AG 08321.

DETECTION OF PARTIAL ANDROGEN DEFICIENCY IN AGING MALES AND ITS IMPACT. PRELIMINARY REPORT.

D.F. OBJECTIVE To detect the incidence of partial androgen deficiency in aging males (PADAM), and to determine if there are more frequency of sexual dysfunction, lower urinary tract symptoms (LUTS), depression, and decrease in muscular mass. MATERIALS AND METHODS We studied 41 male patients. The age was 40 years old and above, we performed in all patients a complete clinical study, laboratory tests, basal hormone levels LH, FSH, PRL, Testosterone (T), Estradiol (E) Prostatic specific antigen (PSA) and Testicular Reserve test (TRT) with hCG. The patients were divided in two groups Group I: Twenty-eight patients (68.3%) without Partial deficiency of androgens, Group II: Thirteen patients (31.7%) with Partial androgens deficiency. We applied the International Index of Erectile Function (IIEF), the International Prostatic Symptoms Score (IPSS), The Beck’s test to evaluate sexual function, LUTS and depression respectively. We measured the arm circumference and compared with standard values by age. RESULTS: There were no differences in andrological clinical study and hormone profile. The T was below 300 ng/dl in three patients. The TRT was significantly abnormal in Group II (p= 0.0001), The Group II showed that the frequency of morning erections was decreased (p=0.032), the scores of the IPSS was higher (p= 0.003). The plasmatic levels of total cholesterol (p=0.013) and triglycerides (p=0.009) were increased. The IIEF and Beck’s test were not statistically significant. CONCLUSIONS We concluded that to detect PADAM should practice a TRT and it does not only detect basal serum levels of androgens, The clinical implications were in the frequency of morning erections and lower urinary tract symptoms and abnormal plasmatic lipids profile.

ESTIMATION OF ENDOGENOUS LUTEINIZING HORMONE-TESTOSTERONE SECRETORY COUPLING IN THREE MAMMALIAN SPECIES. J.D. Veldhuis, Division of Endocrinology, Dept Int Med, Gen Clin Res Ctr and Ctr for Biomathematical Technology, Univ Virginia, Charlottesville, Va, D.M. Keenan*, Dept Statistics, Univ Virginia, I. Clarke*, Prince Henry’s Institute of Medical Research, Clayton, Australia, S. Alexander* and C.H.G. Irvine*, Equine Research Unit, Lincoln University, Christchurch, New Zealand

Neurohormonal ensembles maintain critical organismic functions, such as reproduction, growth, stress-adaptation and metabolism. Feedback and feedforward signaling among coupled glands mediates such homeostatic control, as transduced via putatively deterministic dose-response interfaces. Biological uncertainties (stochastic elements) arise in the form of pulsatile unit- and multicellular secretion into a turbulent (diffusive and advective) blood pool. In addition, whether unobserved but implicit in vivo dose-responsive linkages are constant over time is not known. The present analysis incorporates allowable stochastic variability of dose-responsive signaling within a deterministic construct of composite pulsatile secretion, molecular dispersion and irreversible elimination in the male reproductive axis. Validity is established by threefold simultaneous measurements of hypothalamic gonadotropin-releasing hormone (GnRH), pituitary luteinizing hormone (LH) and gonadal testosterone secretion measured at 30-second or 5-min intervals in the awake, unrestrained horse and sheep. The ram, but not the stallion, exhibited statistically vivid (3-10 fold) within-animal variability in the predicted in vivo dose-dependent actions of LH on testosterone secretion. Likewise, inferred LH-testosterone feedforward coupling in normal men exhibited conspicuous within-subject variability over time, as assessed in perineal and spermatic vein blood. Accordingly, we infer that the in vivo LH-testosterone feedforward interface maintains some varying adaptations in the sheep and human. Further investigations will be required to appraise the generality of such dynamic agonist/target-gland interactions and assess their possible disruption in pathophysiology.
IN UTERO EXPOSURE TO PERSISTENT ORGANIC POLLUTANTS (POPS) AFFECTS GENE EXPRESSION IN THE FETAL TESTIS

Adedayo Adeeko, Daming Li, Jacquetta M. Trasler, Barbara F. Hales, Bernard Robaire, Deps. of Pharmacol. & Therap., Pediatrics, Human Genetics, and Ob/Gyn, McGill Uni., Montreal, Canada. POPs include both pesticides and polychlorinated biphenyls. Exposure during pregnancy to the high concentrations of POPs found in the diet of the Inuit is a public health concern. A mixture of 28 POPs was dissolved in corn oil and administered by gavage (at a dose representing 1000 times Inuit dietary levels) to pregnant SD rats from gestation day 0-19. On day 20 of gestation, fetal testes were dissected, RNA was isolated and 32P-labelled for expression profiling using Atlas Rat 1.2 Arrays; membranes (n=5) were scanned and data were analyzed (GeneSpring). The number of genes detected was 288 in control and 250 in treated. 43 genes were expressed exclusively in control testes; these included LH/HCG receptor, retinoid X receptor alpha, GTPases/GTP binding proteins, G1/S-specific cyclin E, and cyclin-dependent kinase 7. Only 5 genes were expressed after exposure (P27Kip1; neuropilin; Sky proto-oncogene; CYP 2C23 and RabGDSB). POPs caused a downregulation (at least 1.5-fold) in 33 genes, including 14-3-3 protein zeta subtype; cyclin-dependent kinase 4 and dual-specificity-mitogen-activated protein kinase; only 3 genes (G1/S-specific cyclin D2, matrix metalloproteinas-14 precursor and carbonic anhydrase) were upregulated (1.5 fold). Our results identify novel genes expressed in the fetal rat testes and demonstrate that in utero exposure to POPS alters testicular gene expression. Supported by TSRI Canada.

GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS.

D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*2, J.P. Hardy3, and G.R. Klinfelter1,2. University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; NUSEPA, NHEERL, RTD, RTP, NC, and 3Population Council, NY, NY. Previously we found that administration of the well known Leydig cell (LC) toxicant, EDS, to pregnant dams (160 mg/kg, i.p.) during gestation days (GD) 11-17 compromised reproductive development in male progeny. On GD 16, EDS toxicity manifested as a diminished testosterone (T) peak, and on GD 18, males had reduced anogenital distance. We sought to determine whether these exposure results in persistent effects throughout reproductive development. Although puberty was delayed as evidenced by delayed prepuberal separation, hCG-stimulated T production by testis parenchyma was unchanged. However, light micrographs of prepubertal testes from EDS-exposed males revealed seminiferous tubule (ST) cross sections containing only Sertoli cells, indicating a delay in the onset of spermatogenesis. As adults, EDS-exposed males had reduced epididymal sperm reserves, and females mated to these males had reduced fertility ratios and litter sizes. Serum LH levels increased as did hCG-stimulated T production per gram of testis. Additionally, the STs were observed to have incomplete germ cell associations. Morphometric analysis revealed an EDS-related increase in interstitial area (934 ± 357 vs. 318 ± 793 μm2) and a concomitant decrease in ST area (21952 ± 3700 vs. 14181 ± 1366 μm2), suggesting a relative decrease in LCs. Clearly, gestational exposure to EDS can produce profound delays in puberty and spermatogenesis. Thus, while adult mouse LCs are known to be insensitive to EDS, EDS may have direct action on the fetal LC, resulting in abnormal development of the adult testis. (This abstract does not necessarily reflect EPA policy.) DKT: T901915

IN UTERO EXPOSURE TO TRIBUTYL tin ALTERS CELLULAR JUNCTIONS IN ADULT RAT VENTRAL PROSTATE. J. Barthelme*, D.G. Cyr. INRS-Institut Armand Frappier, Univ. Qu»bec, Pointe Claire, Canada. Tributyltin (TBT) is an environmental contaminant used in anti-fouling agents for boats, and as a by-product of industrial processes. Little information exists on the effects of TBT on mammalian reproduction. Intercellular tight junctions are formed by transmembrane proteins such as claudins. The formation of tight junctions involves signalling components of adhering junctions which are formed by cadherins. The present objectives were to determine the effects of in utero exposure to TBT on epithelial cadherin (E-Cad) and claudin-1 (Cldn-1) in the rat ventral prostate. Pregnant Sprague-Dawley rats were given varying doses of TBT (2.5, 10 or 20mg/kg in corn oil by gavage) throughout gestation. Controls received vehicle alone. The pups were weaned on day 21 and sacrificed at day 91. Ventral prostate weights of TBT treated rats were significantly decreased in all treatment groups, but there were no effects on seminal vesicle weights. Serum levels of testosterone were decreased in the two highest dose groups. E-Cad mRNA levels were decreased in a dose-dependent manner. Immunoreactive E-Cad was localized to the epithelial cells and the levels appeared to decrease with increasing TBT dose. Cldn-1 was immunolocalized to the apical lateral margins of adjacent prostatic epithelial cells. Cldn-1 immunolocalization was dispersed along the lateral plasma membrane with increasing TBT dose. This suggests that either the targeting of Cldn-1, or its localization in tight junctions is altered as a result of fetal TBT exposure. These data indicate that in utero TBT exposure results in permanent alterations in circulating testosterone, ventral prostate weight and that these are associated with a loss of cell adhesion and altered tight junctions. Supported by the TSRI (Health Canada).

TESTOSTERONE LEVELS IN MALE PESTICIDE APPLICATORS AND THEIR CHILDREN

S.E. Holland*, V.F. Garry*, University of Minnesota, Minneapolis, MN. S.M. Schroder, J.S. Kesner*, E.A. Knecht*, NIOSH, Cincinnati, OH

In a study of pesticide applicators in the Red River Valley of northwest Minnesota, there appears to be a shift in sex ratio in offspring of some groups of applicators. Total serum testosterone concentrations were measured in 144 subjects in July and October, 1998, and a mean total (July + October) value was computed for each individual. Of these subjects, 95 had fathered children and had performed some pesticide applications during their lives. These applicators were divided into quartiles according to their mean total serum testosterone concentrations. Within each quartile, the sex ratio of their offspring (male:female) was determined.

Table

<table>
<thead>
<tr>
<th>Quartile</th>
<th>Testosterone Range (ng/ml)*</th>
<th>Age (± SD)</th>
<th>No. of Male Children</th>
<th>No. of Female Children</th>
<th>Sex Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.73</td>
<td>46.0 ± 7.8</td>
<td>24</td>
<td>29</td>
<td>0.86</td>
</tr>
<tr>
<td>2</td>
<td>3.74 ± 3.7</td>
<td>45.0 ± 1.6</td>
<td>24</td>
<td>30</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>4.38 ± 3.63</td>
<td>49.9 ± 2.2</td>
<td>24</td>
<td>33</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>5.64</td>
<td>44.0 ± 2.3</td>
<td>24</td>
<td>43</td>
<td>1.59</td>
</tr>
</tbody>
</table>

National Health Statistics

- **Quartile**: determine sex ratio in offspring (male:female) by age group
- **Testosterone Range**: serum testosterone levels
- **Age (± SD)**: mean age of subjects in each quartile
- **No. of Male Children**: number of male children in each quartile
- **No. of Female Children**: number of female children in each quartile
- **Sex Ratio**: ratio of male to female children

Significant differences exist (two-tailed Fisher's exact test) in the sex ratios observed between the 1st and 4th quartiles (P=0.04), 2nd and 3rd (P=0.02), and combined 1st + 2nd compared to combined 3rd + 4th (P=0.04). These results indicate that the sex ratio of children born to pesticide applicators is lower than that of the total serum testosterone levels. Notably, there is a significant difference in the percentage of fungicide-exposed subjects across quartiles. During the 1998 season, 47% of subjects in the combined 1st + 2nd quartiles used fungicides vs. 27.1% in the combined 3rd + 4th (P=0.035). Historically, 729% of subjects in the 1st + 2nd quartiles used fungicides during their lives vs. 45.8% in the 3rd + 4th (P=0.007). The most commonly used fungicides in this region of Minnesota are of the organotin class. It has been suggested that testosterone levels of the father at the time of conception may influence the sex of offspring born. Whether this connection can be drawn from the results seen here is uncertain. First, it is unclear to what extent the mean total testosterone levels taken in this study may reflect the individuals' testosterone levels at the time of their children's conception. Furthermore, it is not known whether the association between lower testosterone levels and lower sex ratio reflects a cause and effect, or if they may be a parallel response to a common toxicant mechanism.

27th annual meeting of the american society of andrology • 39
57

SPERM MOTILITY IN HSFl KNOCKOUT MICE AFTER HEAT SHOCK IS ASSOCIATED WITH FERTILITY DEFICITS. LF Stratk, SD Perreault, LC Luft*, and DJ Dix*. US EPA/ORD, Reproductive Toxicology Div., Research Triangle Park, NC

Heat shock proteins (HSPs) protect cells from environmental exposures such as hyperthermia, oxygen radicals, and heavy metals. During the stress response in mouse testis, expression of inducible HSPs is regulated by activation of heat shock factor 1 (Hsf1). We hypothesized that Hsf1 gene knockout (KO) mice would be more susceptible than wild type (WT) to hyperthermia. Adult WT and KO males were exposed to 25 degrees C (control) or 43 degrees C (heat shock) for 20 minutes. Males were bred from 3-4 weeks after treatment to confirm fertility deficits in response to hyperthermia, and again from 12-13 weeks to examine recovery in WT and KO mice. Results of the first breeding period showed significant reduction in the number of litters for WT, and no litters for KO males exposed to heat. By 12 weeks the number of litters did not differ between heat shocked and control WT, while heat shocked KO mice continued to be significantly different. Sixteen weeks after treatment males were sacrificed for organ weights, histology, and epididymal sperm motility using CASA (Hamiltom Thorne IVOS, version 12.0L). Sperm were tracked for 1 sec (60 frames/sec) with a minimum track length of 30 frames. Progressive sperm were defined by setting average path velocity (VAP)=80 and Straightness=50. CASA parameters were similar for WT males. Both control and heat shock, indicating recovery of sperm motility. In contrast, HSFl KO males exhibited significant decrements in percent motile and percent progressive sperm, and mean VAP, straight line velocity, curvilinear velocity, straightness, and linearity - indicating a lack of recovery following heat shock. Thus sperm motility data could explain differences in breeding performance between WT and HSFl KO mice.

58

ABNORMAL SPERM MORPHOLOGY AND OFFSPRING SEX RATIO IN MALE FUNGICIDE APPLICATORS SM Schrader, TW Turner, NIOSH, Cincinnati, OH VF Garr, SE Holland, Univ of MN, Minneapolis, MN

An agricultural health survey of 670 families was conducted in 5 northwest Minnesota counties. Of these, 550 had children or a pregnancy, and 522 gave detailed information about pesticide use. Of the 522 men who indicated they applied pesticides, 520 applied herbicides. Many also applied insecticides and/or fungicides. Due to the extensive mixture of pesticide types used, and since in this rural setting, it was not possible to find a comparison group of families not exposed to agrochemicals, the men using herbicides only were the referent group compared to other groups using herbicides and other types of pesticides. The sex ratio (male:female) of the children (342 live births) of the 110 men applying herbicides only was 1.12 vs 1.11 in the children (209 live births) of the 72 applicators applying both herbicides and insecticides. These ratios are not statistically different from the U.S. national sex ratio of 1.047. In contrast, the offspring sex ratio (508 live births) of the 180 men applying herbicides, insecticides and fungicides was 1.38 (p=0.07) compared to herbicide only applicators. A subsequent reproductive study of men applying pesticides, recruited from the families in the health survey, was conducted. The percentage of normal sperm morphology in pesticide applicators who had applied fungicides among other pesticides (n=31) was significantly lower compared to pesticide applicators who had never applied fungicides (n=59). The difference was significant using the traditional WHO classification (30.3% vs 21.0%; p=0.02) and the Strict Criteria classification (11.0% vs 3.8%; p=0.001). This research suggests that fungicides may alter sex ratios and sperm morphology. Are these effects related to independent health outcomes? Are the altered sex ratios due to changes in the sperm as suggested by the abnormal morphology, or is the sex ratio a result of maternal exposure during the pregnancy? This same group of herbicide, insecticide, and fungicide applicators had an excess pregnancy loss (11.1% vs 7.0% in California only; OR 1.64; 1.00-2.67). Could the lower sex ratio be a result of a disproportionate number of male fetuses being lost?

59

OFF-SITE SEMEN ANALYSIS IN MEN INVESTIGATED FOR REPRODUCTIVE TOXICITY: PRESERVATION OF SPERM SHAPE AND CHROMATIN ANILINE BLUE STAINING PATTERN. Ciler Celik-Ozenci, Lynne Vigue and Gabor Huszar. The Sperm Phys. Lab. Department of OB/Gyn, Yale School of Medicine, New Haven CT 06510

INTRODUCTION: Spermiogenetic maturation, sperm shape and chromatin maturity are affected by reproductive toxicity. We have devised conditions that preserve the various sperm biochemical markers for 24-36 hours post ejaculation. These markers include the 70 kDa testis expressed chaperone, HspA2 (formerly CK-M), CK activity (represent cytoplasmic extrusion), % immature sperm with cytoplasmic retention, and proportion of viable sperm at ejaculation. We expect that home collection and semen transportation to a central laboratory would improve compliance and analysis quality. However, after overnight shipping, the sperm properties may change. We now report on a method that preserve sperm shape, and pattern of clear and dark chromatin aniline blue staining, the latter indicate the late persistence of histones.

METHODS: We added 20 µg phenylmethylsulphonylfluoride (PMSF) ml of neat semen, and kept the sample at 4°C for 24 hours, in order to simulate shipping conditions. Subsequently, we have compared the proportion of sperm with immature (dark) vs. mature (light) aniline blue staining, as well as the attributes of sperm morphology in the initial and stored samples by the Metamorph program (Univ. Imaging Systems, Downingtown, PA).

RESULTS: The proportion of sperm with abnormal dark and light aniline blue staining was unchanged in the initial vs. 24 hour samples (21.1% and 78.9% vs. 22.5% and 77.5%, N=8 men, 1400 sperm evaluated in each). With respect to the morphometrical attributes, we studied the initial and stored samples of 8 men. The various parameters (initial values in parentheses): head area (17.7µ), head perimeter (16.3µ), long head axis (6.1µ), short head axis (4.9µ), tail length (56µ) showed changes of <5%.

CONCLUSIONS: We have demonstrated that in PMSF:4°C semen storage conditions, both the proportion of sperm with immature histone staining, and shape of stored sperm remain unchanged for 24 hours (Supp. OH-04061).

60

SPERM COUNT VS BLOOD LEAD GENERAL LINEAR MODEL: MULTIPLE STUDIES FROM WORKSITE EXPOSURES WJMcormann*, P.B. Shaw, T.W.Turner* and S.M. Schrader, National Institute for Occupational Safety and Health, Division of Applied Research and Technology Cincinnati, Ohio

In the U.S. blood lead levels have decreased, yet worker exposures in some industries still have elevated blood leads as reported in the CDC Adult Blood Lead Epidemiologic Survey. With just 27 states reporting, there were 5,772 reports of blood lead between 25 and 39µg/dl and over 100 reports of blood lead over 60µg/dl. Blood lead levels of concern to occupational safety and health professionals are defined as levels above 40µg/dl for adult workers per the OSHA standard however some health scientists have concern about the impact of very low blood lead levels in terms of impaired semen quality. We have pooled the relevant literature and extracted data to develop a general linear model relating sperm count and blood lead levels. While numerous published reports clearly demonstrate that lead adversely affects spermatogenesis in men, few of these reports present actual data for sperm counts and blood lead levels useful for a quantitative comparison. Seven reports however, do present enough data to obtain group means for sperm count and blood lead levels. These reports provided data from 415 workers. The ranges for means of blood lead and sperm count were 10-90 and 32-101, respectively. The model incorporating blood lead and study as explanatory variables showed an inverse relationship between blood lead and sperm count, accounting for 82.5% of the variance. For each 10 µg/dl increase in blood lead, a decrease of 6.2 million sperm/ml was indicated.
POLYCHLORINATED BIPHENYLs INDUCED ALTERATIONS OF MORPHOLOGY AND CYTOSKELETON IN MCF-7 HUMAN BREAST CANCER CELLS S. Raychoudhury and A.F. Flowers* Department of Biological and Physical Sciences, Benedict College, Columbia, SC 29204.

Polychlorinated biphenyls are ubiquitous and persistent environmental contaminants. Previously we demonstrated that PCBs are toxic to immature Sertoli cells in vitro. PCBs are also considered as environmental xenoestrogens. A variety of PCBs exhibited possible estrogenic effects on uterus and pituitary gland. Here we have examined in vitro effects of PCBs (Aroclor 1254 and Aroclor 1242) on estrogen responsive MCF-7 human breast cancer cells, and compared their effects with estradiol 17β, and tamoxifen, another ligand for the estrogen receptor. Low concentrations (500 ng or 5 µg per ml) of PCBs, estradiol 17β, and tamoxifen were added to the cultures of MCF-7 cells, and incubated for 72 hours. Morphological changes were observed under phase-contrast microscope. Concomitant cytoskeletal changes were documented with rhodamine-conjugated phalloidin (anti-F-actin) and monoclonal a-tubulin antibodies using indirect immunofluorescence microscopy. Treatment with PCBs, and estradiol exerted striking changes in MCF-7 cell morphology. We have also observed shortened and disorganized actin filaments in these treatment groups. MCF-7 cells also exhibited altered and absent microtubule staining with PCBs and estradiol treatments. These effects were also shared by tamoxifen. The results indicate that exposure of PCBs and estrogen to human breast cancer cells yielded changes in cytoskeleton. This may provide a useful model to study steroid hormone regulation of cytoskeleton in responsive human tumor cells, and to compare environmental pollutants that are xenoestrogens. Supported by NIH Grants P20RR11588 and S06GM08177.

THE INFLUENCE OF ANTISPERM ANTIBODIES ON THE ACROSOME REACTION C. Bohring, J. Skrzypek and W. Krause Department of Andrology, Clinical Training Center of the European Academy of Andrology, University Hospital Marburg, Germany

In the present study the influence of ASA on the acrosome reaction was investigated using flow cytometry for discrimination of acrosome reacted and unreacted spermatozoa. The influence of antisperm antibodies (ASA) on the acrosome reaction (AR) were determined. Spermatozoa from a pool of healthy donors were incubated with 30 seminal plasma samples from infertile men containing ASA, in comparison to a control group of 10 samples without ASA and 5 samples with buffer only. The spontaneous acrosome reaction (SAR) and the induced acrosome reaction (IAR) by calcium ionophor A23187 were observed and determined by means of a flowcytometer. Doublestaining estimates of acrosomal integrity were determined by using a antibody against the inneracrosomal membrane and a secondary FITC labeled antibody. Cell viability was obtained by counterstaining with propidium iodide (PI). Therefore a discrimination between acrosome reacted, unreacted and dead sperm is practicable. Only living sperms were included. The ASA treated spermatozoa showed significantly higher SAR and IAR results than the control group. ASA from patient seminal plasma samples are able to enhance the spontaneous and induced acrosome reaction in donor spermatozoa. This may be of clinical relevance, since usually the spermatozoa undergo the acrosome reaction nearby the egg cell when they start the zona pellucida penetration. Spermatozoa which underwent already the AR induced by ASA, will not be able to fertilize any more.
THE PRODUCTION OF NITRIC OXIDE IN BULL AND FISH SPERM.

Our labs1,2 have reported that Electron Paramagnetic Resonance spectroscopy [EPR] detects Nitric Oxide in fish eggs but not sperm [Creech, et. al., 1998]. This report documents for the first time that cryopreserved Bull sperm produce Nitric Oxide [4.31 +/-1.5 nM/106/sperm/ml] comparable to human sperm [Donnelly, et. al., 1997]. In a comparison of World Precision Instruments, Inc. sensors, the solid-state microchip temperature independent sensor provided more reproducible results than the 2 mm membrane probe. When Bull sperm was thawed, washed 3 times, and allowed to decline in motility to approximately 50% of the initial motility [Hamilton-Thorne CEROS CASA system], the addition of L-Arginine at mM, uM, and nM concentrations significantly increased the percent of motility [ANOVA, P<0.05], but had no significant effect on progressive motility nor on 3 sperm velocity parameters [straight line, curvilinear, VCL; & average path length, VAP]. In similar experiments with fish sperm, Nitric Oxide oxidation products [nitrite and nitrate] were not detected by HPLC in sperm supernatants, L-Arginine was ineffective in stimulating motility, and L-NAMe did not reduce motility. Nevertheless, there was minimal Nitric Oxide produced by washed sperm [0.315 +/-0.215 nM/106 cells], which could be accounted for by residual somatic cell activity.

POSSIBLE ROLE OF INTRACELLULAR CALCIUM IN THE HEAD-TO-HEAD AGGLUTINATION OF BOAR SPERMATOZOA
H. Harayama, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, JAPAN

When boar spermatozoa are incubated in a medium designed for IVF, many of them become agglutinated at the acrosomes. Our previous reports have suggested that this agglutination is associated with molecular changes on the sperm surface that are promoted by capacitation-supporting factors (e.g., extracellular calcium, bicarbonate and serum albumin). Moreover, the agglutination is regulated via a cAMP-mediated signaling cascade that is apparently stimulated by bicarbonate. In order to reveal a downstream part of this signaling cascade, we examined the effects of BAPTA-AM (a cell-permeable calcium chelator) and thapsigargin (a Ca2+-ATPase inhibitor) on the agglutination of boar spermatozoa. Spermatozoa were collected from three mature boars, washed and resuspended in a modified Krebs-Ringer HEPES (mKRR). The sperm suspension was incubated in a water bath for 1 h, and then used to determine the percentages of head-to-head agglutinated spermatozoa. Pre-loading of BAPTA-AM (25 µM) into washed spermatozoa significantly reduced the agglutination resulting from the incubation in mKRR supplemented with bicarbonate (5 mM) plus IBMX (25 µM) or with Sp-5,6-DCl-cBiMP (a cAMP analogue; 10 µM), whereas treatment with BAPTA (a cell-impermeable calcium chelator; 25 µM) had hardly any effect on this event. Moreover, the supplementation with thapsigargin (4 µM) significantly raised the percentages of head-to-head agglutinated spermatozoa after the incubation in mKRR without any modulator of the cAMP-mediated signaling cascade. These findings suggest a possible role of intracellular calcium in the sperm head-to-head agglutination that is regulated via the cAMP-mediated signaling cascade.

A COMPARATIVE ANALYSIS OF ENDOGENOUS PLATELET-ACTIVATING FACTOR CONTENT IN MAMMALIAN SPERM.
W.E. Roudebush1, J.A. Cano1, J.B. Massey1, C.W. Elsner*1, A.A. Toledo*1, and J.R. Diehl*2, Reproductive Biology Associates I, Atlanta, GA, Department of Animal & Veterinary Sciences, Clemson University, Lexington, SC.

Platelet-activating factor (PAF) is a unique and novel signaling phospholipid that has been implicated in a number of biological activities (e.g. reproduction) in addition to platelet activation. While the presence of PAF in the sperm of a number of mammalian species has been demonstrated, no studies have compared content between the species. Therefore, this study compared endogenous PAF levels in sperm between seven different mammalian species: human, squirrel monkey, baboon, porcine, and bovine. Sperm was collected from mature males by the standard methodology for each species. Endogenous lipids were extracted from washed sperm and assayed for PAF by a commercially available [125I]-radioimmunoassay. Data were analyzed by regression analysis. Endogenous PAF was found in all samples assayed. Sperm-derived PAF content ranged from a low of 1.4 pM/106 cells (bull) to a high of 4.9 pM/106 cells (boar). PAF levels for all species (from lowest to highest) were as follows: bull, 1.4 pM/106 cells; squirrel monkey, 2.1 pM/106 cells; baboon, 2.3 pM/106 cells; human, 4.3 pM/106 cells; rhesus, 4.6 pM/106 cells; and boar, 4.9 pM/106 cells. Regression analysis revealed no significant differences in the mean PAF values among the species. The data confirms PAF’s presence in mammalian sperm and that PAF content among the different species is conserved. Additional studies will elucidate the role of PAF in sperm function and the significance PAF plays in mammalian reproduction.

PROBABILITY OF SPERM WITH ACTIVATED KILLER ENZYMES TO HAVE DAMAGED MEMBRANES
U Paasch*, S Grunewald*, H-J Glander*; EAA Center, University of Leipzig, Germany

Introduction: Caspases, apoptotic key enzymes are present and become activated (aCP) in ejaculated spermatozoa preceding externalized phosphatidylserine (PS) at membranes especially after cryopreservation (CRP). Magnetic cell sorting (MACS) was introduced to enrich membrane intact (PS-) sperm. The probability of sperm with aCP having PS+ membranes in native samples and after CRP was computed. Methods: Native and cryopreserved semen samples from healthy donors (n=40) were investigated in 2 fractions depending on Annexin micro bead binding to PS followed by MACS. aCP were determined by carboxyfluorescein derivatives, which are cell permeable and non-cytotoxic. After coating these inhibitors become fluorescent upon cleavage by the aCP aCP in semen samples was computed. Results: Following CRP the amount of spermatozoa containing aCP in ejaculated spermatozoa preceding externalized phosphatidylserine (PS) at membranes especially after cryopreservation (CRP). Magnetic cell sorting (MACS) was intoduced to enrich membrane intact (PS-) sperm. The probability of sperm with aCP having PS+ membranes in native samples and after CRP was computed. Methods: Native and cryopreserved semen samples from healthy donors (n=40) were investigated in 2 fractions depending on Annexin micro bead binding to PS followed by MACS. aCP were determined by carboxyfluorescein derivatives, which are cell permeable and non-cytotoxic. After coating these inhibitors become fluorescent upon cleavage by the aCP in semen samples was computed.

Results: Following CRP the amount of spermatozoa containing aCP in ejaculated spermatozoa preceding externalized phosphatidylserine (PS) at membranes especially after cryopreservation (CRP). Magnetic cell sorting (MACS) was introduced to enrich membrane intact (PS-) sperm. The probability of sperm with aCP having PS+ membranes in native samples and after CRP was computed. Methods: Native and cryopreserved semen samples from healthy donors (n=40) were investigated in 2 fractions depending on Annexin micro bead binding to PS followed by MACS. aCP were determined by carboxyfluorescein derivatives, which are cell permeable and non-cytotoxic. After coating these inhibitors become fluorescent upon cleavage by the aCP in semen samples was computed.
The objective of this study was to examine the influence of reactive oxygen species (ROS), generated by the xanthine-xanthine oxidase (X-XO) system, on DNA fragmentation of equine sperm as determined by the single cell gel electrophoresis (comet) assay. Motile equine spermatozoa were separated on a discontinuous (80/40%) Percoll gradient, washed and resuspended in 25 x 10^6/ml in a modified Tyrodels medium supplemented with 0.1% polyvinyl alcohol (TALP-PVA). In Experiment One, sperm were incubated (1-hr, 37°C) according to the following treatments: 1) Sperm alone, 2) Sperm + X (0.3 mM) -XO (0.025 U/ml), 3) Sperm + X (0.6 mM) -XO (0.05 U/ml), and 4) Sperm + X (1 mM) -XO (0.1 U/ml). In Experiment Two, spermatozoa were incubated (1-hr, 37°C) with the X (1 mM) -XO (0.1 U/ml) system and either catalase (200 U/ml), superoxide dismutase (SOD, 200 U/ml) or glutathione (GSH, 10 mM). Following the 1-hr incubation, DNA fragmentation was determined by the comet assay. The degree of damage was assessed by visual scoring of each sperm comet (at least 100 sperm/treatment) on a scale of 0 (no fragmentation) to 4 (extensive fragmentation). In Experiment One there was an increase in comet grade in each treatment compared to the control group. In Experiment Two, the increase in comet grade was associated with the presence of catalase but not SOD; GSH had an intermediate effect in preserving DNA integrity. This study indicates that ROS promote DNA fragmentation in equine sperm, hydroperoxide appears to be the major ROS responsible for such damage and catalase can protect equine sperm in vitro from DNA damage induced by oxidative stress.

BULL FERTILITY - COMMERCIAL OUTCOME DATA INAPPROPRIATE TO ESTABLISH UTILITY OF A DIAGNOSTIC TEST OF SPERM QUALITY

Many consider dairy cattle ideal to study relationships among attributes of sperm quality and establishment of pregnancy after AI; ~400 AIs/ejaculate are routine. Status as pregnant after AI informs that all sperm attributes (plus all female attributes) were working correctly in some sperm. However, status as non-pregnant is uninformative concerning what (if any) sperm attribute(s) was defective (J Androl 21:10, 2000), if failure was a female or management (e.g., faulty estrus detection) problem, or if some other factor was involved. Summaries based on many females per bull use statistical corrections (ignoring sperm/AI) to calculate bull fertility. Nevertheless, bull accounts for <1% of total variation and variation due to ejaculate within bull is 2/3 of that among bulls (P Christiansen, personal communication; 18th NAAB Tech Conf, 50, 2001). USA A1 industry "ERC values (deviations from mean; ~53% pregnant) range from -13 to +11. Values are between -2 and +2 for 77% of bulls. The 95% CI for most bulls is ±2 units. Only 2% of bulls have a value below -4. Most subfertile bulls are culled from studs by <2 yr of age. Clearly, ERCR (or similar data) are useless for linkage with outcome in laboratory evaluations of sperm aimed at detecting subfertile bulls. Note that accurate prediction of subfertility is a reasonable goal, but accurate prediction of fertility is unlikely (J Androl 14:397, 1993). A larger problem with ERCR data is that number of sperm/AI differs among bulls, is excessive, and is near or above the asymptotic value for the change in pregnancy rate as a function of sperm/AI (to maximize pregnancy rate). This is contraindicated if the goal is measuring potential of sperm in a given sample to fertilize an oocyte and provide a viable embryo. To provide fertility outcome data in which bull (or treatment imposed on semen) accounts for a substantial proportion of the total variance, one should carefully control extraneous factors, use only nulliparous cattle of one breed (to minimize female factor), and inseminate a uniform low dose (i.e., 0.8 or 1.5 x 10^6 frozen-thawed sperm). Treatment effects likely would be detected. To validate a diagnostic test, however, this is logistically difficult as data for >20 bulls (some subfertile) and >1000 AIs/bull would be desirable.

THE FATE OF BOVINE OOCYTES INTERACTING IN VIVO WITH 1, 2 OR >3 SPERM: IMPLICATIONS ON DATA INTERPRETATION
R.P. Amann* and RG Saacke*, BioPore Inc, State College, PA and Virginia Polytechnic Institute & State University, Blacksburg, VA.

It general is acknowledged that the more accessory sperm (AcS) associated with an ovum, the greater probability that ovum will form an embryo and fetus. This obfuscates the fate of ovum associated with 1 AcS. We compiled data for 267 ova from 6 fertilized cows and calculated the odds of forming an excellent/good (EG) embryo. Unexpectedly, bull account for <1% of total variation and variation due to ejaculate within bull is 2/3 of that among bulls (P Christiansen, personal communication; 18th NAAB Tech Conf, 50, 2001) USA A1 industry "ERC values (deviations from mean; ~53% pregnant) range from -13 to +11. Values are between -2 and +2 for 77% of bulls. The 95% CI for most bulls is ±2 units. Only 2% of bulls have a value below -4. Most subfertile bulls are culled from studs by <2 yr of age. Clearly, ERCR (or similar data) are useless for linkage with outcome in laboratory evaluations of sperm aimed at detecting subfertile bulls. Note that accurate prediction of subfertility is a reasonable goal, but accurate prediction of fertility is unlikely (J Androl 14:397, 1993). A larger problem with ERCR data is that number of sperm/AI differs among bulls, is excessive, and is near or above the asymptotic value for the change in pregnancy rate as a function of sperm/AI (to maximize pregnancy rate). This is contraindicated if the goal is measuring potential of sperm in a given sample to fertilize an oocyte and provide a viable embryo. To provide fertility outcome data in which bull (or treatment imposed on semen) accounts for a substantial proportion of the total variance, one should carefully control extraneous factors, use only nulliparous cattle of one breed (to minimize female factor), and inseminate a uniform low dose (i.e., 0.8 or 1.5 x 10^6 frozen-thawed sperm). Treatment effects likely would be detected. To validate a diagnostic test, however, this is logistically difficult as data for >20 bulls (some subfertile) and >1000 AIs/bull would be desirable.

ANDROLOGICAL PARAMETER DIFFERENCES BETWEEN IDENTICAL TWIN BULLS C. Lessard*, JF Biloodeau*, J.Bailey, P. Lecerq*, and R. Sullivan** From the *Département d'Obstétrique-Gynécologie, Faculté de Médecine, and **the Département des Sciences Animales, Faculté des Sciences de Agriculture et de Alimentation, Université Laval, Saine-Foy, Québec, GIK 7P4**

Embryonic cloning technique offers the possibility to obtain several genomically identical subject. Few information are reported about andrological parameters of identical twins. In 1995, the production of four bulls generated by blastocyst separation had been reported by Johnson et al referred as Quad (Q1, Q2, Q3, and Q4). The semen produced by the Quad during the period of 1994 to 1996 have been cryopreserved. In this study, andrological parameters of fresh and cryopreserved semen from Quad have been evaluated. Andrological parameters analysis of fresh semen showed a lower motility and a higher percent of abnormal sperm for Q3 comparatively to his brothers (p<0.05). Andrological parameters analysis of cryopreserved spermatozoa have revealed that Q4's spermatozoa displayed more cryodamages comparatively at his brothers, especially Q1. Q4's cryopreserved spermatozoa showed a lower percentage of motility, of progression motility and of mean path velocity compared to Q1's cryopreserved spermatozoa (p<0.05). Further more, the presence of P25b protein was lower on Q4's cryopreserved spermatozoa than his twins (p<0.05). P25b is a sperm surface protein proposed as a bull fertility marker. Development of embryos produced by in vitro fertilization using cryopreserved semen confirmed the damages observed on Q4's cryopreserved spermatozoa, with a noticeable lower percentage of embryo development. The andrological parameters analysis of fresh and cryopreserved semen suggest an individual semen difference between genomically identical subjects.
EFFECT OF WEIGHT AND AEROBIC TRAINING ON STEROID HORMONES AND SEMEN PROFILES W.H. Park*, K.H. Rha*, K.J. Cho*, M.S. Lee, Yonsei and Hanyang University, Seoul, Korea

OBJECTIVE: To determine if weight and aerobic training affects hormones and semen profiles in healthy young men. DESIGN: 10-week randomized trial with 15 men assigned to 3 groups: 1) weight training (bench press, sit up, leg squat (3 sets/day; 70% of one-repetition maximum (IRM)) 2) aerobic training (30 min/day; 70% of maximum heart rate (HRmax)) 3) control group.

SUBJECTS AND METHODS: Fifteen volunteers attending college (age 22.6(19-25) years) had their blood sampled in the morning for testosterone, LH, FSH, prolactine and cortisol, and had semen samples taken for computerized semen analysis for at the start of study, during(3 times) and after study. RESULTS: Testosterone(F=2.17), cortisol(F=1.00), FSH(F=1.61) and LH(3.53) decreased during exercise in the weight training group. Sperm concentration(F=1.84) is increased during exercise in the weight training group, and semen volume is increased in both the weight training group(F=1.00) and the aerobic group(F=2.99). Such increases resumed to the normal range after cessation of exercise in the weight training group. There were no significant changes in other sperm motility/morphology and serum prolactin levels. CONCLUSIONS: Weight training seems to decrease demand for hormonal stimulus and increases semen volume and sperm concentration.

A previous study of semen quality in men providing one sample each, showed significant associations between exposure to high levels of air pollution and adverse effects on sperm morphology and sperm chromatin structure (Selevan et al., Environ Health Perspect 108:887, 2000). Those positive findings prompted a follow-up study with a longitudinal design. Thirty-seven men from Teplice District, Czech Republic were surveyed on 7 occasions over 2 years time: during late summer when pollution was low and winter when pollution was high. Semen outcomes were analyzed for changes associated with levels of air pollution components (SO2, NOx, PM10 or PAH) or with season (late summer or winter) using a mixed model regression analysis (SAS) for repeated measures, and controlling for potential confounders. No significant associations were found between exposure and sperm concentration, percent motile sperm, or percent normal sperm heads. In contrast, the percent sperm with abn normal chromatin structure increased with exposure. Specifically, DNA fragmentation index (DFI), obtained using SCSATM, showed significant (p<0.05) positive associations with season of high air pollution (b=0.191, 95% Cl: 0.018, 0.365), and with SO2 levels (b=0.026, Cl: 0.001, 0.053). Correlations between DFI and either PM10 or PAH were of borderline significance (p=0.066 and p=0.059, respectively). These findings confirm our earlier results suggesting that intermittent exposure to high levels of air pollution may increase risks of infertility and male-mediated developmental toxicity. This abstract does not reflect EPA policy.
ASSISTED REPRODUCTION USING HAMSTER SPERMATOZOA GENERATED INTO XENOGENEIC TESTES

S. Tsabalas, Ch. Mamoulakis, A. Kaponis, D. Baltogiannis, X. Giannakopoulos, I. Miyagawa, A. Tasos, N. Sofikitis

1Dept of Urology, Ioannina University, Ioannina, Greece
2Dept of Urology, Tottori University, Yonago, Japan

INTRODUCTION AND OBJECTIVE: Transplantation of donor spermatogonia into the seminiferous tubuli of recipient animals has resulted in the completion of donor spermatogenesis within the recipient testis. However, the reproductive potential of donor spermatogonia generated into recipient xenogeneic testes has not been studied yet and is evaluated in the current study.

MATERIALS AND METHODS: A piece of testicular tissue (300 mg) was removed from the left testis of each of 15 nude rats. The latter piece of rat testicular tissue was replaced by a piece of testicular tissue collected from each of 15 cryptorchid hamsters with spermatogenic arrest at the primary spermatocyte stage. Postoperatively all rats were administered vascular endothelial growth factor three times a week (intracutaneously). Five months later the left testis of each rat was evaluated. When hamster spermatogonia and round spermatids (RSs) were found into the rat testes, they were injected into two different groups of hamster oocytes (groups A and B, respectively). Additional spermatogonia and RSs recovered from healthy hamster testes were injected into two different groups of hamster oocytes (groups C and D, respectively). Fertilized oocytes were cultured and transferred into the fallopian tubes of pseudo-pregnant recipients.

RESULTS: The fertilization rate (FR) and the pregnancy rate (PR) were significantly larger (P<0.05; Chi-square test-Yates correction) than in group A (20% and 100%, respectively). The increase in post-thaw variability was equally observed in fertile and infertile men, and in men with different testicular pathologies. Post-thaw variability was not correlated with individual's age, length of disease, history of smoking, or alcohol intake. In conclusion, semen samples collected for cryopreservation may show a high degree of post-thaw variability of sperm motility & motion kinetics despite low degree of pre-freeze variability. Further research is required to explain the exact mechanism(s) of such phenomenon, which may help select ideal samples for cryopreservation.

INTER-SEASONAL VARIATION OF SEMEN PROFILES IN HEALTHY YOUNG MEN IN KOREA

K.H. Rha*, W.H. Park*, J.Y. Noh*, S.W. Han*, M.S. Lee. Yonsei University, Seoul, Korea

OBJECTIVE: To determine whether there is a seasonal change in semen profiles in healthy young men in their twenties

DESIGN: Repeated semen analysis - 3 times/season in 1 week interval andevery season (January, April, July, October); analyzed by computerized semen analysis (IVOS, Hamilton-Thorn, USA)

SUBJECTS: Twenty healthy young college men volunteered to give semen samples for academic purposes; Strict period of abstinence of 3-5 days was enforced. Semen analysis was performed according to the WHO recommendations.

RESULTS: Sperm concentration was highest in spring (88.8±19.1 million/ml) and lowest in summer (51.2±8.5 million/ml)(P=0.0235). Sperm motility was highest in spring (88.8±9.2%) and lowest in autumn (70.3±8.3%) (P=0.043). No difference was noted in other parameters including semen volume and morphology.

CONCLUSIONS: There seems to be a trend of increased sperm concentration in the spring time.

This study was supported by KFDA 2001 endocrine disruptor research and the BK 21 for medical sciences, Yonsei University, Korea.

INTER-SEASONAL VARIATION OF SEMEN PROFILES IN HEALTHY YOUNG MEN IN KOREA

K.H. Rha*, W.H. Park*, J.Y. Noh*, S.W. Han*, M.S. Lee. Yonsei University, Seoul, Korea

OBJECTIVE: To determine whether there is a seasonal change in semen profiles in healthy young men in their twenties

DESIGN: Repeated semen analysis - 3 times/season in 1 week interval andevery season (January, April, July, October); analyzed by computerized semen analysis (IVOS, Hamilton-Thorn, USA)

SUBJECTS: Twenty healthy young college men volunteered to give semen samples for academic purposes; Strict period of abstinence of 3-5 days was enforced. Semen analysis was performed according to the WHO recommendations.

RESULTS: Sperm concentration was highest in spring (88.8±19.1 million/ml) and lowest in summer (51.2±8.5 million/ml)(P=0.0235). Sperm motility was highest in spring (88.8±9.2%) and lowest in autumn (70.3±8.3%) (P=0.043). No difference was noted in other parameters including semen volume and morphology.

CONCLUSIONS: There seems to be a trend of increased sperm concentration in the spring time.

This study was supported by KFDA 2001 endocrine disruptor research and the BK 21 for medical sciences, Yonsei University, Korea.

Objective: To compare two silane-coated silica bead sperm preparation methods (Enhance, Conception Technologies, San Diego, CA, USA; PureSperm, NidaCon Laboratories AB, Gothenburg, Sweden) with respect to recovery efficiency, clean-up (presence of debris or round cells), and CASA motion parameters. Design: Comparison of two commercial sperm silane-coated silica bead processing methods. Setting: Private medical center-based andrology laboratory and infertility program. Patients: One-hundred couples who presented for routine sperm washing for intrauterine insemination. Interventions: Sperm specimens, randomly assigned to one of two silane-coated silica bead processing methods, were evaluated by CASA. Main Outcome Measures: Recovery efficiency, debris/round cells, and CASA motion parameters (including hyperactivation) before and after separation of the two different processing methods. Results: There was no significant difference between the two study populations with respect to their initial (raw) motion parameters. There was no significant difference between the two prep processes with respect to their ability to remove cellular debris and round cells. There was no significant difference in recovery efficiencies (motile sperm) between Enhance (37.4%) and PureSperm (40.5%) processed specimens. Whereas PureSperm and Enhance both significantly (P<0.05) improved all sperm motion parameters over the initial-raw values, PureSperm's improvement was significantly (P<0.001) greater than Enhance in all CASA categories. Additionally, the percent of hyperactivated (as defined by the CASA categories VCL, ALH, and linearity) sperm was significantly (P<0.001) greater in PureSperm (7.3%) than Enhance (1.2%). Conclusion: While both sperm washing products significantly improved sperm performance, PureSperm consistently had superior end products across every CASA category. Considering the substantial improvement of sperm motion characteristics, PureSperm is ideal for routine sperm washing for intrauterine insemination.

There has been one published case in peer review literature of an early chemical pregnancy resulting from in vitro fertilization (IVF) and ICSI using cryopreserved-thawed sperm that had been aspirated from the testes of a man who had been dead for several hours. The case presented here describes a successful conception and delivery following IVF and ICSI with gametes from this same couple. With the first chemical pregnancy there were no motile sperm found to inseminate. However, in the successful case there were some live sperm on her fifth oocyte retrieval which resulted in the live delivery. The fifth IVF cycle, which still used the initial frozen sample aspirated from the testes many hours after death, was completed 2 1/4 years after the first retrieval at age 37. There were 14 mature oocytes produced. Fourteen motile sperm were found for ICSI. Four oocytes fertilized and a 9-cell, 8-cell, and two 6-cell embryos were transferred. She conceived and delivered a single full term healthy baby in June 2001. Though motile sperm were found for ICSI in cycles 4 and 5, all 5 retrieval cycles resulted in the transfer of embryos. Thus this is the first reported success of using frozen sperm aspirated from testes post-humously that has resulted in a live pregnancy. We are aware of one other case that only made the lay press.

PREGNANCY RATES WITH FROZEN TESE SPERM ARE HIGHLY DEPENDENT ON AGE OF FEMALE PARTNER. P. Studney*, M. Puccinii*, L. Ray*, L. Nelson*, C. Niederberger, L. Ross, G.S. Prins, Departments of Urology and Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL

Cryopreservation of testicular sperm retrieved by surgical extraction has been successful in achieving satisfactory numbers of post-thaw viable sperm for IVF-ICSI (Prins et al, 1999). In conjunction with a large, established IVF program, we have attained equivalent pregnancy and live birth rates with frozen TESE sperm as with fresh TESE sperm (Habermann, et al, 2000). With a new IVF program at UIC, we have used frozen TESE sperm exclusively for the past year and herein report that pregnancy success is highly dependent on age of the female partner. Fourteen azospermic males underwent TESE with cryopreservation of isolated sperm as previously described. Sperm were assessed for pre-freeze count, viability and morphology and for post-thaw count and viability. A total of 16 cycles of IVF-ICSI were performed resulting in 7 pregnancies (44%).

When pregnancy results were analyzed by age of the female partner, the IVF-ICSI pregnancy rate with frozen TESE sperm was 80% for patients under 35 yrs (n=5), 50% for patients between 35-37 (n=4) and 14% for patients > 38 yrs (n=7), Chi-squared test for trend, P=0.023. Importantly, analysis of sperm parameters pre-freeze and post-thaw did not vary between either the pregnant vs non-pregnant couples nor with the age of the female partner indicating that the female component is the key variable affecting the pregnancy outcome. These preliminary data show that 1) TESE sperm properly separated and frozen at the time of retrieval can be successfully used in a small, new IVF program at rates equivalent to a well-established, large program, and 2) that age of the female partner is a significant factor in pregnancy success when frozen TESE sperm are used for IVF-ICSI.

CASE STUDY: PREGNANCY RESULTING FROM IVF FOLLOWING ICSI USING SPERM HEAD WITH DETACHED TAIL. B.R. Emery1,3, C. Thorp4, P. Kuneck4, L. Erickson4, D.T. Carrell1,2,3,4 1 University of Utah School of Medicine, Department of Andrology, 2 Obstetrics and Gynecology and 3 Physiology, Abbot Northwestern Hospital, 4 Center of Reproductive Medicine

Midpiece defects resulting in male factor infertility due to decreased motility are often treated using intracytoplasmic sperm injection (ICSI). Such midpiece defects include easily decapitated sperm defect, which has been described previously by Kamal, et al. (Hum. Reprod.; vol. 14 (11), 2791-2795, 1999). In the case presented here a couple was referred for assisted reproduction due to decreased ovarian reserve. The couple underwent an in vitro fertilization (IVF) cycle using donated oocytes. ICSI was attempted with standard technique and failed due to the inability to manipulate the sperm without breaking the tail from the head. ICSI proceeded by injecting, as close to each other as possible, a sperm head and the removed tail portion into each oocyte. This resulted in fourteen embryos out of twenty-two mature oocytes retrieved of varying quality on the third day after retrieval. Following IVF semen was evaluated by transmission electron microscopy (TEM). TEM revealed a severely abnormal morphology, including microcephalic sperm and sperm with a degraded/abnormal connecting piece and poor centrosome formation. Few sperm were seen with an attached tail, and a small percent of these contained normal head morphology. Two eight cell embryos were transferred back three days after ICSI. The couple achieved chemical pregnancy as seen by elevated serum hCG concentration on day fourteen post transfer. This case reveals that fertilization using ICSI with sperm from a patient with easily decapitated sperm defect is possible even if intact sperm are not available. Additionally, pregnancy may result in transfer of embryos created in this manner.
85

ICSI- AND ROSI-MEDIATED TRANSGENESIS IN THE MOUSE
H. Akutsu, H. Kusakabe, T. Osada and R. Yanagimachi, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, HI 96822

We report here an improved ICSI-mediated transgenesis and ROSI-mediated transgenesis. A drop (~2 µl) of sperm mass squeezed out of the cauda epididymis was placed at the bottom of a 1.5 ml plastic tube, covered with 200 µl of EGTA medium (50 mM EGTA + 50 mM NaCl + 10 mM Tris-HCl, pH 7.4 – 8.2). After standing for 10 min at 37°C, sperm diffused into the medium was collected. A 30 µl aliquot of the sperm suspension was transferred into another tube which was then plunged into liquid nitrogen for 10 sec. Upon defrosting by hand-warming, the aliquot was mixed with 10 µl of 4 mM dihydrotestosterone (DHT) in phosphate-buffered saline. Concentrations of sperm and DHT at this stage were ~10^5/ml and 1 mM, respectively. After standing for 30 min at 0-4°C, linearized pcX-EGFP DNA in TE buffer was added such that DNA concentration in the medium was ~6 ng/ml. One min later, sperm-DNA medium was mixed with 10x (w/v) polyvinyl pyrrolidone (PVP) in Hapes-buffered C2B medium such that the final PVP concentration was ~7%. ICSI was performed as described previously (Biol. Reprod. 52, 709-720, 1995) except that only sperm head was injected into each oocyte. The amount of DNA-containing medium injected with sperm head was ~1 pl. ICSI was completed within 2 hr after sperm isolation from the epididymis. Sperm treated in the same manner but without DHT treatment served as the control. Of 213 oocytes injected with DHT-treated sperm, 127 (60%) developed into morulae/blastocysts, 119 (87%) of which were EGFP-positive. 25 (27%) of 94 transferred morulae/blastocysts developed into live offspring, 10 (40%) of which being EGFP positive. All these 10 grew into fertile adults and their offspring were all EGFP-positive. In the control group, 135 (78%) of 170 ICSI oocytes developed into morulae/blastocysts, 103 (76%) of which were EGFP-positive. 18 (33%) of 54 transferred morulae/blastocysts became live offspring, 2 (11%) of which were EGFP-positive. EGFP-positive offspring were also obtained by the simultaneous injection of an oocyte with a freshly isolated nucleus of round spermatid and pcX-EGFP DNA. Two EGFP-positive offspring were obtained after transfer of 43 ROSI-derived morulae/blastocysts.

86

Y CHROMOSOME DELETION (Yp11.3) ASSOCIATED WITH COMPLETE GLOBOZOOSPERMIA - A STUDY OF 7 BROTHERS
Z. Kilani, I R. Ismail, I S. Ghunaim, I F. Flesch,2 D. Bradley, I B. Brewis,2 C. Barrett, 2 & I. Farah Hospital, Amman, PO Box 5323, Jordan; 2Assisted Conception Unit, Birmingham Women’s Hospital, Birmingham, B15 2TG, UK

Introduction Although fertilization and pregnancies can be achieved in men with globozoospermia, success rates are low (Kilani et al., 1998). Currently, the cause(s) of globozoospermia are unknown. In this study of 7 brothers we show that a deletion on the Y chromosome (p11.3) is strongly associated with globozoospermia. Materials & Methods In a family of 10 siblings, 2 sisters and 3 brothers were naturally fertile. 5 brothers were infertile and required ICSI. We examined 4 of the infertility (A,B,C,D) and 3 of the fertile brothers (E,F,G). Fine structure of the spermatozoa was examined using TEM. The presence of acrosomes was detected using 18.6 monoclonal antibody. Karyotype analysis was performed on PBLS. Results 3 brothers had complete globozoospermia assessed by TEM (A-C). No acrosomes were present. Brothers A-D had a 46 XY karyotype but a large deletion in the Yp11.3 region in 10-25% of cells. 17 cycles of ICSI were performed (A=3, B=4, C=6, D=4) and the average normal (2PN) fertilization rate was 37%. 2 cycles had no fertilization (B,C). 3 brothers (A-C) had 13 cycles of ICSI yet failed to achieve a pregnancy. One brother (D), also with a mosaic deletion (25% of cells) and globozoospermia (as diagnosed at the light microscope level, TEM results to be confirmed) has one going pregnancy on the 4th ICSI attempt. Conclusion Deletion on the Y chromosome (Yp11.3), even in a small percentage of cells, is strongly associated with globozoospermia and subsequent infertility.

87

GENE EXPRESSION PROFILES IN THE VENTRAL, DORSAL AND LATERAL LOBES OF THE BROWN NORWAY RAT PROSTATE
T.R. Brown,Y. Tian,* Div. Reproductive Biology, Dept. Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205

The rat prostate is an exocrine gland comprised of three anatomically and functionally independent lobes. The three lobes, ventral, dorsal and lateral, require androgen for differentiation and development and for maintenance of function. However, the level of androgen receptor expression differs between lobes and castration causes epithelial cell apoptosis in the ventral, but not in the dorsal and lateral lobes. Characterization of the lobe-specific pattern of gene expression will provide insight into the functional and molecular differences between the lobes and their responses to hormones. Microarrays containing 1176 different cDNAs were used to characterize lobe-specific differences in gene expression by hybridization with probes prepared from RNA of each lobe. Overall, the largest number of genes was expressed in the lateral lobe (325), relatively fewer in the ventral lobe (316) and the fewest in the dorsal lobe (265). A relatively large number (215) of the same transcripts were identified in all three lobes. The probasin gene exhibited the greatest difference in expression between lobes; expression in the lateral lobe was 10-fold higher than in the dorsal lobe and 100-fold higher than in the ventral lobe. Glutathione-S-transferase M2, copper-zinc superoxide dismutase, cathepsin L and clusterin were expressed at high levels in all three lobes, but the magnitude varied several fold between lobes. These studies demonstrate the power of gene expression array technology in identifying the specific pattern of transcript expression for each prostate lobe and provide the tools necessary to characterize changes in gene expression due to the effects of androgens and/or estrogens and aging. (Supported by PO1 AG08321)

88

DIFFERENTIAL EXPRESSION OF NITRIC OXIDE SYNTHASE ISOFORMS IN HUMAN PROSTATE (BPH, PROSTATE CARCINOMA AND NORMAL) TISSUE

We examined the endogenous expression of nitric oxide synthase (NOS) in prostates containing a diverse and distinct array of diseased tissue. The objective is to investigate a potential role of NOS and nitric oxide (NO) in the pathogenesis of benign prostatic hyperplasia (BPH). We focused our direction to the fibromuscular stromal component of the prostate, a region widely thought to have an inductive effect on BPH. Histological sections were stained with H&E to histologically verify regions of BPH, carcinoma and normal prostate tissue. Each of the three isoforms of NOS showed varying patterns of expression in these sections, using a semi-quantitative scale of 1-4+. Neuronal NOS (nNOS) was examined in tissue samples from five patients who underwent radical prostatectomies. Sections were stained with H&E to histologically verify regions of BPH, carcinoma and normal prostate tissue. Each of the three isoforms of NOS showed varying patterns of expression in these sections.
PROTEIN PROFILING OF EXPRESSED PROSTATIC SECRETIONS. C. M. Muller, D. Diamond and R. E. Berger, C. Spergen Biosystems, Fremont, CA and Dept of Urology, University of Washington, Seattle WA 98195

Analysis of expressed prostatic fluid proteins may assist in the diagnosis of inflammatory (category IIIa), non-inflammatory (cat IIb) chronic nonbacterial prostatitis/chronic pelvic pain syndrome (CPPS), and asymptomatic inflammatory prostatitis (cat IV). We use a novel mass spectrometry approach utilizing selective adsorption chips to begin characterizing differences between men with CPPS and men without symptoms, and between men with and without inflammation.

METHODS Men with cat III CPPS (cases) and men without pelvic pain (controls) were enrolled after excluding men with bacterial prostatitis, urethritis or positive gu history. Prostatic secretions (EPS) were obtained by digital expression and quickly analyzed for inflammation by hemacytometer. EPS were centrifuged to obtain a cell-free supernatant which was diluted into protease inhibitor cocktail and frozen at 80°C. Thawed aliquots were processed for peptide determination by micro Lowry method, diluted to 1:20, and 2uL were placed with acetonitrile onto reverse phase Ciphergen ProteinChip® Arrays. Peptide profiles were generated by Ciphergen SELDI (surface enhanced laser desorption/ionization) technology for 17 controls and 34 cases. A second sample from seven men was also analyzed.

RESULTS EPS protein concentrations ranged from 30-50 mg/mL. Protein profiles optimized from 3 to 50 kDa resolved up to 43 peaks per sample. Major peaks corresponded to masses of PSA (28kDa), PAP (47.1) and PAP (10.8), and these were present in almost all samples. Other major peaks present in some samples had masses of 3.4, 5.4, 21.7, 29.3, 33.5, 38.7, and 47.1kDa. The 3.4kDa peaks were present only in samples with inflammation, whereas the 5.4 and 10.8kDa peaks were missing or low in these same samples. CONCLUSION: The ProteinChip®Array technology was successfully and rapidly used to analyze a range of proteins from EPS samples. Our experience demonstrates the feasibility of this highly sensitive, rapid and adaptable technique which may help identify specific and different processes during the course of CPPS and inflammation. Supported by the Paul G. Allen Foundation for Medical Research.

THE ASSOCIATION BETWEEN ANDROGEN RECEPTOR AND EGF RECEPTOR INHIBITS EGF-INDUCED INVASION IN PROSTATE CANCER CELL LINES. L. Bonaccorsi, V. Carloni, M. Muratori, G. Forti and E. Baldi. Dept. of Clinical Physiopathology, Andrology Unit, University of Florence, Italy.

Emerging evidence indicate that androgen-sensitive prostate cancer is characterized by a lower malignant potential. We previously demonstrated that androgen receptor (AR) expression by transfection of PC3 cell line (Bonaccorsi et al, 2000) decreased laminin adhesion and Matrigel invasion of these cells through reduction of EGF expression. Treatment with androgens further reduced adhesion and invasion of PC3-AR cells without modifying EGF expression. We investigated here if the AR, upon activation by androgens, has a direct effect on EGF-EGFR receptor (EGF-R) interaction and intracellular signalling leading to invasion of these cells. Immunofocuscopic microscopy demonstrated that in control cells (PC3-Neo), EGF and EGF-R co-localized and redistribute at the plasma membrane in response to EGF. In PC3-AR cells co-localization between EGF-R and EGF-R was strongly reduced and abolished by pre-treatment with 1R881. Co-immunoprecipitation studies confirmed the interaction between EGF-R and EGF-R. Tyrosine phosphorylation of d4 subunit in response to EGF was strongly reduced in PC3-AR cells compared to PC3-Neo. To determine whether disruption of EGF-R-Eβ subunit interaction was due to a direct action of the AR on EGF-R, immunocofocal and co-immunoprecipitation studies of EGFR and AR were conducted. These studies showed co-localization at membrane level as well as co-immunoprecipitation of the two proteins, indicating an interaction of EGF-R and AR. Importantly, a key signaling pathway for invasion, was decreased both in basal conditions and in response to EGF and was further reduced by treatment with 1R881. In conclusion, in androgen-sensitive prostate carcinoma cells, androgens and AR contribute to confer a less malignant phenotype both by reducing the expression of βE and by interfering with EGF-R-βE interaction and signal leading to invasion through a direct interaction between AR and EGF-R.

INCREASED TISSUE FACTOR (TF) EXPRESSION IN PROSTATE CANCER: ROLE AS NEOPLASTIC MARKER IN EXFOLIATED PROSTATE CELLS IN POST-PROSTATE MASSAGE URINE. M.J. Wilson1,2,3, T.J. Kappel1,2, R. Bach1,4, R. Hailer1,3, J.W. Slaton1,3,7, N.F. Wasserman1,5,7, B. Quast6, A. S. Sinha1,6,7, V.A. Medical Center and Departments Lab. Med. & Pathology, Urol. Surgery3, Medicine4, Radiology5, and Gen., Cell Biol. & Devol.6, Cancer Center7, University Minnesota, 55417.

TF is a transmembrane glycoprotein that functions in intracellular signaling and angiogenesis, as well as its well characterized role in hemostasis. Its expression is increased in prostate cancer. Our goal was to evaluate TF as a neoplastic marker in exfoliated prostate cells in post prostate massage urine. We examined TF expression by immunofluorescence microscopy (mouse monoclonal antibody) in frozen sections of radical prostatectomy tissues. TF was localized to ductal epithelial cells and in epithelial cells in some glands with stacked epithelium. Only scattered secretory and basal epithelial cells in nodular BPH expressed TF, whereas prostatic cancers were uniformly positive for TF. Immunofluorescent localization of TF, PSA, and their co-localization was examined in Cytospin preparations of cell suspensions prepared from post prostate massage urine. The percent cells positive for PSA was 24.3 and 24.8% in post prostate massage urine of men without (N = 9) and with (N = 10) prostate cancer upon biopsy. TF positive cells were 15.5 and 23.1% of total cells, and 6.4 and 10.4% of PSA positive cells respectively in men with and without cancer. These data show that TF is over expressed in prostate cancer and suggest that it may serve as a marker for malignant neoplasia in exfoliated prostate cells.

To review the efficacy, side effects, and compliance of LHRH agonist and anti-androgen monotherapy in the treatment of localized (T1-3) prostate cancer. Records of 97 patients with clinically localized prostate cancer who received either LHRH agonist monotherapy or anti-androgen monotherapy were reviewed. Patients were divided into two groups, group 1 (mean age 76 [plus minus] s.e.m.) consisted of those receiving LHRH agonist (n = 62) and group II (mean age 76 [plus minus] s.e.m.) consisted of patients treated with anti-androgen monotherapy (n = 35). In group II, 18 patients received bicalutamide (50mg), 13 nilutamide (150mg), and 4 flutamide (750mg). The PSA levels, Gleason scores, clinical stage, and side effects were recorded. The mean follow up period was 50.8 [plus minus] 8.5 months in group I compared to 43.1 [plus minus] 2.2 months in group II. Only 1 of the 62 patients (1.6%) in group I showed PSA progression, whereas 20 of the 35 patients (57.1%) in group II showed progression (see table). In group II, 10/20 (50%) showing PSA progression were treated with LHRH salvage therapy and 8/10 (80%) responded. Hot flashes (54.8%) and lethargy (41.9%) were the most common side effects in group I. In contrast, nipple-tenderness (40%) and light-dark adaptation (17.1%) were more often seen in group II. LHRH agonist therapy provides excellent long-term control of localized prostate cancer and can effectively salvage PSA failures on anti-androgen monotherapy. Anti-androgen monotherapy in the doses prescribed did not provide adequate long-term control in the majority of patients.
93

EARLY USE OF VACUUM CONTRACTION DEVICE (VCD) FOLLOWING RADICAL PROSTATECTOMY (RP) FACILITATES EARLY SEXUAL ACTIVITY AND POTENTIAL RETURN OF ERECTION R. Raina*, R.A. Saleh*, J. Chauban, A. Agarwal, C.D. Zippe, Urological Institute, Cleveland Clinic Foundation, Cleveland, OH The objective of this study was to examine the efficacy and compliance of early use of VCD following RP to potentially prevent corporeal fibrosis and expedite recovery of erectile function. Following RP and catheter removal, 74 patients (mean age, 59 yrs) were instructed to use the VCD daily (without constriction ring) to induce intracavernous pressure and tumescence. The constriction ring was applied if sexual intercourse was attempted. VCD use began an average of 3.9 wks (2-8 wks) after surgery and the mean follow-up was 8 months (6-9 mo). The treatment efficacy was analyzed by responses to abridged 5-item version of the International Index of Erectile function (IIIEF) and stratified by nerve-sparing status. Patient outcome regarding compliance, return of natural erections, and ability for vaginal intercourse were assessed. All patients used VCD with a compliance rate of 81% (60/74). Patients successfully used VCD with constriction band for vaginal intercourse at a frequency of twice/week with spousal satisfaction rate of 33/60 (55%). Nineteen out of 60 (32%) reported return of natural erections at mean interval of 9 months with 10/19 (52%) patients having erections sufficient for vaginal intercourse. Fourteen out of the 74 (19%) discontinued VCD due to problem with the pump (discomfort 55%, unable to get air tight seal 8%, social inconvenience 17%, and penile bruising 20%). In conclusion, early use of VCD following RP facilitates early sexual intercourse, early patient/spousal sexual satisfaction, and potentially, early return of natural erections.

94

DIETARY ISOFLAVONES INDUCE APOPTOSIS IN PROSTATE CARCINOMA
Risbridger GP, Jarred RA, Keikha M, Dowling C McPherson S. Husband A, Pedesen J & Frydenberg MF. Centre for Urological Research, Monash Institute of Reproduction & Development, and Department of Urology, Monash University, 246 Clayton Road, Melbourne, Australia; Melbourne Pathology, Collingwood, Melbourne, Australia
Phytoestrogens are implicated as agents that contribute to the low incidence of prostate disease in Asian men. This study reports the effects of a combination of 4 main isoflavones found in the typical Asian diet (genistein, biochanin formononetin and diadzein) on prostate cell apoptosis. 40 men were recruited to the study upon diagnosis of prostate cancer (Gleason score 5 or more). Prior to surgery 20 men consumed 160mg/day of dietary isoflavones in the aglycone state with a ratio of biochanin+genistein:formononetin+diadzein of 2:1. A comparison of pre and post treatment parameters showed no significant change in serum PSA, testosterone or Gleason score in treated men and no adverse events were recorded in the treated group. Using unbiased methods of sampling, radical prostatectomy specimens from isoflavone treated men were compared to those from untreated control patients and the incidence of apoptosis determined using morphology and TUNEL staining. There was no significant difference in the incidence of apoptosis in regions of non-malignant or high grade tumor, but in regions of low grade cancer (Gleason grade 3 or less) there was a significant (p<0.001) increase in the number of cells in apoptosis. This study shows that the short-term consumption of dietary isoflavones induced significant apoptosis in low grade prostate cancer that may be of potential benefit. It also demonstrates that the valid assessment of therapeutics should be conducted in the absence of dietary isoflavones as their actions may confound the interpretation of results.

95

IS TESTOSTERONE AND PSA RELATED IN ELDERLY POPULATION? K.H. Rha*, J.W. Jung*, Y.D. Choi*, S.W. Han*, S.J. Hong*, M.S. Lee. Yonsei University, Seoul, Korea
Purpose: The serum levels of testosterone is known to be decreased in the elderly population, but most data is accumulated in large laboratories not actual community based population. Serum prostate specific antigen(PSA) has become routine sero­logical screening test in Korea and its levels is known to be relat­ed to age. We analyzed the levels of serum testosterone and PSA in a rural population in Korea. Material and Methods: From March to September 1999, a total of 714 men over 50 were enrolled to take both serum PSA and testosterone. The data was analyzed by multiple regression analysis. Results: The mean age was 66.92±8.42years(50-89) and the distribution according to age 50-54 36 men, 55-59 70 men, 60-64 135 men, 65-69 169 men, 70-74 157 men, 75-79 105 men, 80-84 29 men, and 85-89 13 men. Their mean serum testosterone level was 4.85ug/dl, 4.68ug/dl, 4.83ug/dl, 4.71ug/dl, 4.67ug/dl, 4.41ug/dl, 4.41ug/dl and 4.92ug/dl, respectively with the mean value of 4.50ug/ml. The serum testosterone level was not correlated with age(r=0.0039) or serum PSA(r=0.093). Conclusion: Seryn testosterone levels did not change according to age, and also unrelated to levels of serum PSA.

96

ACCUMULATION OF MACROPHAGES IN THE TESTIS, EFFERENT DUCTS AND EPIDIDYMIS OF CATHEPSIN A DEFICIENT MICE. N.Korah1, A. d’Azzo2, L. Hermo1
Department of Anatomy, McGill University, Montreal1, St. Jude Children’s Research Hospital, Memphis, TN2
The lysosomal enzyme cathepsin A (PPCA) functions as a protective protein and catalyst for α-neuraminidase and β-galactosidase in a multienzyme complex and is abundantly expressed in the testis, efferent ducts (EDs) and epididymis. In the present study, Bouin’s- and glutaraldehyde-fixed material for LM immunocytochemistry and routine EM analysis, respectively, of 2, 6 and 10 month old PPCA−/− and +/+ mice were examined to determine the effects of PPCA deficiency on these tissues. While the Sertoli cells of the testis of PPCA−/− mice appeared normal as revealed by LM prosaposin immunostaining and routine EM analysis, no changes were noted to germ cells at the various stages, a dramatic increase in the number of vacuolated interstitial cells was noted with age. The identity of these cells was confirmed with a monoclonal antibody F4/80 that recognizes macrophages. The latter are a normal component of the interstitial space of the testis, but at low numbers in wild type mice. Such cells were also noted in the intertubular spaces of the EDs and epididymis of PPCA−/− mice, but not in PPCA+/+ mice. Interestingly, the EDs showed no major abnormalities to the epithelium at various ages of PPCA−/− mice. This was in contrast to the epididymis, where gross abnormalities were noted with age to the epithelial cells lining this duct. Thus in PPCA−/− mice, macrophages appear to be recruited as a response to different factors in the case of the testis, EDs and epididymis. (Supported by CIHR).
SHORT AND LONG-TERM EFFECTS OF THE ANTI-ESTROGEN
ICl 182,780 ON THE TESTIS AND EFFERENT DUCTULES, WITHOUT CHANGES IN TESTOSTERONE 1
Cleida A. Oliveira*2,3, Kay Curnes*2, Qing Zhou2, Rong Niec2, David E. Kuehl*2, Gary L. Jackson*2, Luis R. Franca3, Masaaki Nakai2, Rex A. Hess2,4Dept of Vet Biosci, Univ of Illinois, 2001 S. Lincoln, Urbana, IL 61802, 3Depts of Morph & Physiol, Fed Univ of Minas Gerais, Belo Horizonte-MG- Brazil
Targeted disruption of mouse estrogen receptor-a (aERKO) has demonstrated that ERa is essential for fertility in males. An alternative model for the study of estrogen in the male was developed in the rat using the anti-estrogen ICl 182,780, which blocks both ERa and ERb and reproduces the male phenotype seen in aERKO, including testicular atrophy and infertility. The present study evaluates time-response effects of ICl to determine the sequence of events leading to infertility and testicular atrophy. Male rats, 30 days old, were treated with ICl 182,780 (10mg) or castor oil (control) for 3 to 150 days. There were no differences in body weights, nor in the wt of ventral prostate and seminal vesicle-coagulating glands. No effect was found on serum testosterone and LH concentrations, except for an LH increase on d 15. ICl induced dilation of efferent ductules on d 3 post-treatment and dilation increased over time (200% increase). Efferent ductule epithelium was reduced in height; however, microvilli increased in length up to d 73, but then decreased. A transient increase in lysosomes in nonciliated cells was seen from d 15 to 100. Testicular wt increased by d 45 and seminiferous tubules were dilated on d 52, effects on tests that persisted until d 100. On d 150, the testis wt decreased and severe atrophy was observed, suggesting back-pressure atrophy due to fluid accumulation. The expression of NHE3 (Na/H+ exchanger) was down regulated in efferent ductules after treatment, providing an explanation for the accumulation of fluid. This study provides further evidence that estrogen is involved in the regulation of structure and function of the efferent ductules and that a functional ER is required for the expression of NHE3, as well as for maintenance of ion and fluid reabsorption, an essential function for long-term fertility in the rodent. Supported by NIH grant HD35126.

EFFEC T OF 5 ALPHA-REDUCTASE (5A-R) INHIBITION ON GENE EXPRESSION IN THE EPIDIDYMIS N. Henderson*, B. Robaire, Deps. Pharmacol. & Therap. and Ob/Gyn, McGill University, Montreal, QC, Canada.
The epididymis is the site of sperm maturation and storage. 5a-Rs (type 1 and 2) are key factors in this tissue because of their role in converting testosterone to dihydrotestosterone (DHT), the main androgen regulating epididymal functions. To better understand 5a-R mediated regulation of gene expression in the epididymis, the effects of inhibiting both 5a-Rs were examined. Epididymides were collected from rats treated for 28d orally with 0 or 10mg/kg/day of PNU 127,858, a dual Sa-R inhibitor. This study uses microarray analysis to determine the number of genes affected by different doses of the inhibitor. The results show that 5a-Rs play a role in regulating gene expression in the epididymis, with 5a-R type 2 being more active than the type 1. The study provides important insights into the role of 5a-Rs in epididymal function and fertility.

GERM CELL-SPECIFIC EXPRESSION OF A CYSTATIN-RELATED EPIDIDYMAL SPERMATOCYTOGENIC (CRES) PROMOTER-CAT TRANSGENE N. Hsiai1, I.P. Brown2*, S.R. Han2*, and G.A. Cornwall1, 1Texas Tech University Health Sciences Center, Lubbock, TX and 2Vanderbilt University School of Medicine, Nashville, TN.
The cystatin-related epididymal spermatogenic (cres) gene encodes a protein that targets spermatozoa to the caput epididymidis. The cres gene is expressed in the epididymis and is involved in sperm maturation. Inhibition of 5a-Rs may affect the expression of cres and lead to infertility. The study investigates the expression of cres in the epididymis and its role in sperm maturation. The results show that cres is expressed in the epididymis and is important for sperm maturation and storage. The study provides insights into the role of cres in epididymal function and fertility.

ANALYSIS OF THE 5' UPSTREAM REGION OF RAT 5 ALPHA REDUCTASE (5A-R) TYPE 2 Shayesta Seneunndun* and Bernard Robaire Deps. Pharmacol. & Therap. and Ob/Gyn, McGill University, Montreal, Canada.
INTRODUCTION. 5a-R reduces testosterone to the more potent dihydrotestosterone (DHT), the main androgen responsible for maintaining epididymal structure and functions (sperm maturation and storage). Inhibiting the synthesis of DHT may be important in the development of male contraceptives. The mRNA of the type 2 isozyme is more abundant than the type 1 mRNA in the epididymis. The type 2 5a-R may play a role in endocrine disorders, such as benign prostatic hyperplasia, prostate cancer and alopecia. Although its 51 upstream region has been sequenced, there is no information regarding the promoter and enhancer sequences regulating the expression of the 5a-R type 2 gene. METHODS. Sequential deletion analysis was done to map the 5' upstream region of the 5a-R type 2 gene. Five sequentially smaller fragments were generated: Sacl (2736 bp), Dral (2062 bp), insert 5 (1563 bp), EozIRI (1152 bp) and HindIII (680 bp), containing the 5a-R promoter region. The constructs were transfected into PC3 cells by the calcium phosphate method and analyzed for luciferase activity. The results show that the 5a-R promoter region is essential for the expression of the 5a-R type 2 gene. DISCUSSION. The data indicate the presence of at least two strong repressor elements upstream of the 5a-R promoter region. The study provides insights into the regulatory mechanisms of the 5a-R gene and its role in epididymal function and fertility.
FURTHER CHARACTERIZATION OF THE MURINE EPIDIDYMAL SPAM1 (PH-20). H. Zhang* and P. A. Martin-DeLeon, Department of Biological Sciences, University of Delaware, Newark, DE

Previously we demonstrated that the murine epididymal Sperm Adhesion Molecule I (Spam1 or PH-20) is synthesized by the epithelium, preferentially in the distal tract and is released in the luminal fluid (LF). We also showed that while testicular (TS) and epididymal Spam1 (ES) have hyaluronidase activity at neutral pH, they are under different transcriptional regulation. The aim of this study is to further compare characteristics of the two forms of the GPI-linked protein and to determine if secreted ES is released with its lipid anchor. With GeneRacer amplification of the 3' end of the cDNA we show that the polyA tails are shorter in the epididymis than in the testis. Two-dimensional PAGE with immunoblotting reveals a single isoform for ES with the isoelectric point (pI) ranging from 7.6 to 8.3, and four isoforms from 6.6 to 9.0 for TS. Lectin blotting analysis of testicular (TT) and epididymal tissues (ET) and caudal sperm (CS) shows that PHA-E, LEL, and STL, which bind to N-linked chains, recognize a 67 kDa band in epididymis and sperm only; while PNA, which preferentially binds to O-linked side chains, recognizes the band in both of the tissues and sperm. This suggests the presence of an O-linked glycan in the murine Spam1 which was confirmed by enzymatic O-linked deglycosylation of extracts from TT and ET and CS which all showed a shift in the MW. This suggests that the O-linked glycosylation site that we identified by computer analysis of Spam1 cDNA is functional. Ultracentrifugation of the LF revealed that ES is secreted preferentially as insoluble particles, likely of a vesicular nature. Treatment of the insoluble material with PI-PLC revealed that the majority of ES is released with its lipid anchor, a form in which it can be taken up by sperm.

CHARACTERIZATION AND IDENTIFICATION OF CAPACITATION-ASSOCIATED PIG SPERM TYROSINE PHOSPHOPROTEINS. C. Reyes-Moreno*, C. Dubé, S. Tardif and J.L. Bailey, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, QC (Canada)

Membrane fluidization and protein tyrosine phosphorylation are two concomitant events related to sperm capacitation. In boar sperm, we have previously targeted a tyrosine phosphoprotein, "p32" and a dual-specificity kinase both of about Mr of 32,000. The appearance of p32 and kinase activity are both calcium-dependent. The present work was conducted to further characterize and to identify these capacitation-related proteins. Freshly ejaculated sperm from sexually mature boars were washed and incubated conditions known to induce capacitation. Immunoprecipitation, immunoblotting and proteomic analysis revealed seven soluble tyrosine-phosphorylated proteins, all aligned in the range of Mr 30,000 but with different isoelectric pH values (pI). Three capacitation-related tyrosine phosphoproteins were identified as the acrosin-binding sp32 (pI 6.5), and two triosephosphate isomerase isoforms (pI 7.1 and pI 7.9). A protein of Mr 20,000 was also screened and identified as porcine phospholipid hydroperoxide glutathione peroxidase. These proteins are known to be present in other specialized cells and could play important roles in energy metabolism, regulation of intracellular ion fluxes and pH, and most particularly in exocytosis, acrosin-activation, acrosomal structure or zona pellucida binding. Their discovery provides new insights to the biochemical mechanisms underlying the the earlier and latter stages sperm capacitation. This work was supported by FCAR and NSERC.
DIFFERENT SIGNAL TRANSDUCTION PATHWAYS ARE INVOLVED DURING HUMAN SPERM CAPACITATION INDUCED BY BIOLOGICAL AND PHARMACOLOGICAL AGENTS J. Thundathil, E. de Lamirande, C. Gagnon, Urology Research Laboratory, Royal Victoria Hospital and McGill University, Montreal, Quebec, Canada

Human sperm capacitation involves activation of the extracellular signal regulated kinase (ERK) pathway as well as a related increased double phosphorylation of the Thr-Glu-Tyr motif (P-Thr-Glu-Tyr-P) in some sperm proteins. We investigated the regulation of this process. Fetal cord serum ultrafiltrate (FCSu), follicular fluid ultrafiltrate (FFu), progesterone and a combination of dibutyryl cAMP (dbcAMP; a cell permeant analog of cAMP) and isobutylmethylxanthine (IBMX; a phosphodiesterase inhibitor) were used as inducers of capacitation alone or in combination with inhibitors of protein kinase A (H89), protein tyrosine kinase and the ERK pathway. However, the level of P-Thr-Glu-Tyr-P in sperm capacitation induced by FCSu, FFu and progesterone was regulated by different signal transduction pathway, and involved receptor type protein tyrosine kinase and the ERK pathway. However, the level of P-Thr-Glu-Tyr-P in sperm capacitation induced by dbcAMP and IBMX was mainly mediated through protein kinase A and Src family of protein tyrosine kinase. In conclusion, biological agents (FCSu, FFu and progesterone) and pharmacological agents (dbcAMP and IBMX) may induce capacitation through regulation of different signal transduction mechanisms (Supported by CHR and NSERC).

ACROSOME REACTION IN HUMAN SPERM: ROLES OF CAPACITATION, TYROSINE PHOSPHORYLATION AND MEMBRANE EXTERNALIZATION OF PHOSPHATIDYLSERINE M. Morshed, A. Schuffner, Z.Y. Lin, H. Duran, M. Hsu, D.R. Franken, S. Oehninger. The Jones Institute for Reproductive Medicine, Norfolk, VA, USA

The objective of these studies was to assess the roles of capacitation conditions, tyrosine phosphorylation and plasma membrane externalization of phosphatidylserine (PS) on the spontaneous and agonist-induced acrosome reaction of human spermatozoa. Motile sperm were purified by gradient centrifugation and examined under capacitating conditions in human tubal fluid supplemented with human serum albumin (HSA) at 0.3, 6 and 24 hours. Protein tyrosine phosphorylation was examined by immunoblotting with a monoclonal antibody against phosphorysorbin; annexin V binding was used to monitor PS translocation; and acrosome reaction was detected by immunofluorescence using FITC-PSA and Hoechst 33258. Tyrosine phosphorylation of various sperm proteins was time- and HSA-dependent increasing over time and with higher doses of HSA. On the other hand, PS externalization increased over time but decreased with HSA addition. The spontaneous and calcium ionophore-induced acrosome reaction increased with capacitation time. There was a positive significant correlation (r=0.7, p<0.005) between spontaneous acrosome reaction and PS externalization over time; calcium ionophore-stimulated acrosome reaction did not correlate with PS translocation. Taken together, these results suggest that (i) the spontaneous acrosome reaction increased over time in association with increased tyrosine phosphorylation and changes in phospholipid transbilayer behavior in the plasma membrane, both underling molecular events of capacitation; and (ii) calcium ionophore induced acrosomal exocytosis that was dependent on capacitation time but did not result in further changes in PS translocation.

COMBINATION OF DETERGENT AND DTT CAUSES PATERNAL CHROMOSOME DAMAGE. Monika A Szczygilk*, Ryuzo Yanagimachi, W Steven Ward*. Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii 96822.

We explored the effect of diethiothreitol (DTT) on chromosome stability in mouse spermatozoa. Spermatozoa were treated with (1) the ionic detergent mixed alkyltrimethylammonium bromide (ATAB), (2) the non-ionic detergent Triton X-100, (3) membrane disruption by vigorous pipetting (confirmed by the Live/Dead assay), or (4) untreated swim-up controls. For each treatment, two samples were tested, with or without the addition of DTT during the treatment procedure. Sperm nuclei obtained after different treatments were injected into oocytes for cytogenetic analysis - paternal and maternal chromosomes of the zygote before the first cleavage were visualized and examined. For each experiment in which oocytes were injected, part of the sperm preparation was examined for the stability of the sperm nuclear matrix by the halo assay. It was found that treating sperm with either detergent combined with DTT caused severe chromosome breakage, whereas the controls without DTT had normal chromosomes. Only 40% (59/149) and 22% (23/103) of examined metaphases were scored as normal in ATAB+DTT or Triton+DTT treatments, respectively. Treatment with detergents only allowed us to obtain normal karyotypes (ATAB, 85%, 99/210; Triton X 100 82%, 116/153) with a similar frequency as in the swim-up controls (92%, 103/112). Sperm in which the membranes were disrupted by vigorous pipetting in the presence of DTT had a reduced frequency of normal chromosome (62%, 64/104) while those without DTT were normal (79%, 125/159). Interestingly, chromosomes of swim-up sperm exposed to DTT without pipetting or detergents remained normal in 87%, 153/176, of the metaphases examined. In these sperm, the DTT was still able to reduce the pronamines, as determined by the halo assay. Our results indicate that simultaneous treatment with detergent and DTT induces extensive chromosomal breakage, and that pronamine disulfide reduction alone is insufficient to cause this chromosomal damage.

In these studies we aimed to characterize the effects of the physiological, homologous agonists of the acrosome reaction, i.e., the zona pellucida and progesterone/follicular fluid on human spermatozoa. The specific aims of our studies were: (1) to examine the dependency of the solubilized, human zona pellucida-induced acrosome reaction on Gi protein activation and calcium influx; and (2) to determine whether progesterone/human follicular fluid exert a priming or synergist effect on the solubilized zona pellucida-induced acrosome reaction. Purified motile spermatozoa from fertile donors were exposed to the agonists/antagonists in a micro assay (Franken et al, JARG, 2000) and acrosomal status of live spermatozoa was determined by indirect immunofluorescence using PSA-FITC/Hoechst 33258. Pre-treatment with pertussis-toxin (100 ng/mL) and EGTA (2.5 mM), inhibited, to a large proportion, the zona pellucida-induced acrosome reaction without affecting the spontaneous rate of exocytosis. Progesterone (1.25 µg/mL) and human follicular fluid (10%) exerted a priming, time-dependent effect on the zona pellucida-induced acrosome reaction. These studies demonstrated that: (i) acrosomal exocytosis of capacitated human spermatozoa triggered by homologous zona pellucida is dependent on both Gi-protein (pertussis toxin sensitive) and calcium influx-regulated mechanisms; and (ii) progesterone and follicular fluid exerted a priming role on the zona pellucida-induced acrosome reaction.
MALE INFERTILITY IN NECTIN-2 DEFICIENT MICE
S. Mueller*, T. A. Rosensicht*, R. A. Bronson, E. Wimmer*, School of Medicine, SUNY at Stony Brook, Stony Brook, NY
The members of the nectin/CD155 gene family represent a new class of cell-cell adhesion molecules of the immunoglobulin superfamily. Nectin-2 and -3 are highly expressed within the seminiferous epithelium in a stage specific manner. In order to investigate the function of nectins, we disrupted the nectin-2 gene in mice (knockout). nectin-2 -/- mice were castrated and testes processed for histo-morphometrical and flow­cytometry. (P<0.001) and eSp:Sg (P<0.001) were consistently greater in T cats. The percentage of eSp was increased (P<0.001), whereas proportions of Sertoli cells (Sc; P<0.05) and spermatogonia (Sg; P<0.001) were decreased in T compared to N males. Consequently, the ratios of eSp:Sc at the expense of overall lower sperm quality and (2) an increased proportion of eSp which is perhaps caused by delayed and/or altered spermatogenesis. (NIH KOI RR00135, DFG Je63/4-1)

FATTY ACID PROFILE OF SPERMATOZOA FROM TERATOZOOSPERMIC DOMESTIC CATS. B.S. Pukazhenthi1, M. Ollero2, B. Teter3*, J.G. Howard1, J.G. Alvarez2 and D.E. Wildt1* 1Conservation & Research Center, Smithsonian National Zoological Park, Front Royal, VA; 2Department of Obstetrics/Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; 3Department of Biochemistry, University of Maryland, College Park, MD
Cholesterol (C), phospholipid (PL) and fatty acid (FA) content were analyzed in the sperm of teratozoospermic (<40% normally shaped sperm) domestic cats (n = 4). Electroejaculates were washed in Ham’s F10 medium without serum. Sperm lipids were extracted in chloroform-methanol, and FA were transmethylated using a BF3-methanol reagent and analyzed by gas chromatography. C and PL were analyzed by TLC, identified and quantified by spectrodensitometry. Mean ± SEM sperm motility was 68.7 ± 2.4%, and normal sperm were 26.0 ± 7.7%. Mean C content was 0.4 ± 0.1 nmol/106 cells, and C/PL molar ratio was 0.3 ± 0.2. The neutral PL phosphatidylcholine (44.3 ± 7.5%), sphingomyelin (27.2 ± 2.0%) and phosphatidylinositol (15.2 ± 9.3%) were most abundant. The major saturated FA were palmitic (16:0; 30.7 ± 1.5%) and stearic (18:0; 24.3 ± 5.6%). Monounsaturated FA included palmitoleic (16:1n-7; 4.1 ± 3.4%) and oleic (18:1n-9; 2.6 ± 1.1%). Polyunsaturated FA (PUFA) included linoleic (18:2n-6; 6.0 ± 0.9%), arachidonic (20:4n-6; 3.3 ± 1.7%) and docosahexaenoic (DHA; 22:6n-3; 1.7 ± 1.1%) with the most abundant being docosapentaenoic (DPA; 22:5n-6; 25.7 ± 7.0%). The total FA, unsaturated FA accounted for 45.0% with 78.9% being n-6 acids, whereas, PUFAs accounted for 38.3% with 92.9% n-6 acids. These data represent the first characterization of feline sperm lipids. In contrast to human and rhesus monkey with DHA being the most abundant PUFAs, DPA is the most prevalent PUFAs in feline sperm, which is similar to the rabbit and dog. (NIH KOI RR00135)

SPERMATOGENIC TRAIT DIFFERENCES IN THE NORMOSPERMIC VERSUS TERATOZOOSPERMIC DOMESTIC CAT. K. Stoebel1*, K. Jewgenow1*, S. Blottnier1*, D.E. Wildt2*, B.S. Pukazhenthi2. 1Institute for Zoo Biology and Wildlife Research, Berlin, Germany; 2Conservation & Research Center, Smithsonian National Zoological Park, Front Royal, VA, USA
Teratospermia (ejaculation of <40% normally shaped sperm) commonly occurs in -70% of felid domestic cats. Ten T males (mean +/- SD, 9.3 +/- 7.0% normal sperm) and ten N males (66.1 +/- 6.8% normal sperm) were castrated and testes processed for histo-morphometrical and flow-cytometrical analysis of spermatogenesis. No differences (P>0.05) were found in tubule diameter (~199.7 µm), epithelium height (~61.6 µm), interstitium area (~17.3%), Leydig cell number (~89.4 cells) and blood vessel number per cross section (~10.8) between N and T donors. However, quantification of cell populations at the spermiogenesis stage revealed a higher (P<0.03) total number of elongated spermatids (eSp) per counted tubuli in T (915.6 +/- 278.2) compared to N (647 +/- 193.9) cats. The percentage of eSp was increased (P<0.001), whereas proportions of Sertoli cells (Sc; P<0.05) and spermatagonia (Sg; P<0.001) were decreased in T compared to N males. Consequently, the ratios of eSp:Sc (P<0.001) and eSp:Sg (P<0.001) were consistently greater in T cats. DNA flow cytometry revealed a higher (PP<0.01) total spermatogenic transformation (ratio of haploid: diploid cells) and meiotic index (ratio of haploid:tetraploid cells) for T cats. These findings indicate that the teratospermic cat, compared to its normospermic counterpart, produces (1) more sperm/Sc at the expense of overall lower sperm quality and (2) an increased proportion of eSp which is perhaps caused by delayed and/or altered spermatogenesis. (NIH KOI RR00135, DFG Je63/4-1)

TERATOZOOSPERMIA – MOLECULAR BACKGROUND OF SPERM DYSFUNCTION
M. Szczygiel and M. Kurpisz, Unit of Reproductive Biology, Institute of Human Genetics, Pol. Acad. Sci., Poznan, Poland.
It is not clear whether in teratozoospermia the altered sperm morphology is critical for diminished fertilization potential or the other associated factor(s). In our studies we posed a question of correct sperm morphology assessment, its consequences on sperm functional assay (SPA) as well as we searched for possible mutations in 3 selected genes, coding for protein 4.1 (cytoskeleton), pro-acrosin (sperm penetration) and p53 (pro-apoptotic).
Out of 140 infertile males, we have selected 38 individuals with teratozoospermia according to Kruger restricted criteria (<14% with correct sperm morphology) and subjected to sperm-penetration assay (SPA). Regression analysis was subsequently performed. Molecular analysis of pro-acrosin gene was performed by using PCR SSCE (single strand conformational polymorphism) and PCR HD (heteroduplexes). Mutation of gene coding for 4.1 protein was analyzed by using PCR and restriction enzyme digestion (methylation of codon for initiation of translation) while gene for p53 protein was analyzed by NIRA (non-isotopic RN-ase cleavage assay).
Morphology of sperm seems to be not a decisive factor for altered sperm-oocyte interaction. However, in normozoospermia, SPA results depended both on sperm morphology and motility (regression analysis). We did not find a mutation in codon of initiation of translation (p4.1). In pro-acrosin gene we did not identify a mutation responsible for lack of oocyte penetration but only the increased amount of polymorphisms in infertile population (exon 5). There are sequenced 8 mutations/polymorphisms revealed in proximity or exon VII. Although some revealed mutations may suggest lack of immediate influence on sperm-oocyte interaction, it may not exclude, the induction of genetic errors in early embryo development.
EXPRESSION ANALYSIS OF THE Y CHROMOSOME GENES IN IDIOPATHIC AZOOSPERMIA AND SEVERE OLIGOZOOSPERMIA
E Koh*, H Suzuki, and M Namiki, Department of Urology, Kanazawa University, Kanazawa, Japan.

Introduction and objectives: Microdeletions in azoospermia factor (AZF) region have approximately 10% of males with idiopathic azoospermia or oligozoospermia. Three regions of microdeletions in Yq11 (AZFa, b, and c) have been indicated. In each region, candidate spermatogenic genes have been proposed. The aim of this study was to analyze the expression of Y chromosome genes in azoospermic and oligozoospermic patients, namely USP9Y (ubiquitin-specific protease 9, Y chromosome), DBY(DEAD/H box polypeptide, Y chromosome), DBY DEAD/H box polypeptide, Y chromosome), DAZ(deleted in azoospermia), RBM(RNA binding motif), DAZ(deleted in azospermia), TPR motif Y), CDY(chromodomain Y), XKRY(XK related Y), SMCY(selected mouse cDNA on the Y), elf-IAY (translation initiation factor IA), RBM(RNA binding motif), DAZ(deleted in azoospermia), PRY(PTP-BL related Y), BPY2(basic protein Y2). Methods: The patients consisted of 66 azoospermia who underwent testicular biopsy for histologic diagnosis or IVF treatment. Among 16 patients with obstructive azoospermia and normal spermatogenesis served as control. A small piece of testicular tissue by biopsy was used. RNA was reverse transcribed and polymerase chain reaction amplified using specific primers. These expressed ubiquitously. The DBY gene was only expressed in Y chromosome genes in azoospermic and oligozoospermic patients, namely USP9Y, DBY, RBM, DAZ, BPY2, and PRY and X-Y homologous genes was showed as follows. The RBM, DAZ, BPY2, and PRY were express in 51%, 68%, 78%, respectively. Conclusion: It is possible that Y-specific genes, RBM, DAZ, BPY2, and PRY and X-Y homologous gene as DBY are associated with azoo/oligospermia.

RELATIONSHIP BETWEEN AGE OF MAN, SPERM DNA FRAGMENTATION AND INFERTILITY

D. Evenson, South Dakota State University, Brookings, S.D., M. Virro*, Markham Stouffville Health Centre, Markham, Ontario, C. de Jonge, University of Minnesota, Minneapolis, MN and J. Brannian, University of South Dakota, Sioux Falls, SD.

Age of man has a direct relationship with the extent of sperm DNA fragmentation and this, in turn, has a relationship to fertility potential. Over seven hundred aliquots of semen used for ICSI/IVF procedures were frozen and shipped to South Dakota State University. Each sample was thawed and analyzed by the Sperm Chromatin Structure Assay (SCSA TM). There was a significant increase in the DNA Fragmentation Index (DFI) with age. Of interest, the intersect point between age and our current threshold of 30% DFI for a <1% probability of a successful term pregnancy was age 47. This value is similar to the value found in the California AGES study (Wyrobek et al., submitted) where the DFI was correlated with healthy, unexposed men in each decade of life from the 20s to the 70s. Thus, both studies appear to indicate an age-related DNA fragmentation and age should be considered in both toxicology and fertility studies.

CARNITINE TREATMENT OF OLIGOZPERMIC MEN IN IUI/IVF

S. Micic, N. Lalic*, N. Bojanic*, Clinical center of Serbia, Clinic of Urology, Belgrade, Yugoslavia

In the epididymis of many species the major constituents are organic solutes - L-carnitine, myo-inositol, glutation, lactate, glycerophorylcholine and certain steroids such as dyhydrotestosterone. Carnitine is a component of both seminal plasma and spermatozoa and is cofactor of several enzymes involved in the transformation of fatty acids, but also required for sperm motility. We analyzed 125 infertile men, during 6 months, in procedure of IUI/IVF, who 3 months received 3 gr of carnitine and 3 months without carnitine. All were in IUI/IVF procedure. The group was divided: I sperm count below 10x10/ml and II over 10x10/ml, A-treated and B-non-treated groups. The group was divided: I sperm count below 10x10/ml and II over 10x10/ml, A-treated and B-non-treated groups.

THE DEGREE OF SPERM DNA FRAGMENTATION AND/OR STABILITY TO PREDICT THE OUTCOME OF THE INTRAUTERINE INSEMINATION.

M. Morshedi, H. Duran, S. Taylor, S. Oehninger; The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA

We investigated whether the degree of DNA fragmentation and/or stability of ejaculated human sperm could predict the outcome of intrauterine insemination (IUI) therapy. This was a prospective cohort study carried out at a tertiary center for reproductive medicine. Seventy-seven patients underwent 102 consecutive cycles of IUI using washed semen. Demographic parameters, treatment cycle characteristics and sperm parameters of the sample used for IUI were evaluated. Sperm features that were analyzed included: concentration and motility parameters (CASA), morphology (strict criteria), DNA fragmentation (terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling, TUNEL) and stability (acridine orange staining under both acid and heat denaturing conditions). The main outcome measure was clinical pregnancy as defined by ultrasonographic visualization of intrauterine gestational sacs. Results: Logistic regression analysis revealed that the following variables could predict IUI outcome: number of ovarian follicles on day of hCG, the age of woman, sperm morphology, DNA fragmentation and average path velocity after semen preparation and sperm concentration in semen. Only TUNEL and the age of woman exhibited significance (p<0.05). In conclusion we can say that treated groups improved progressive motility and swim up spermogram.
DEVELOPMENT OF AN INEXPENSIVE ARTIFICIAL VAGINA FOR SEMEN COLLECTION FROM RABBITS

Cathy K. Naughton, David Nelson, Anthony J. Thomas, Jr., The Cleveland Clinic Foundation, Cleveland, OH

The rabbit is well suited for infertility research because of the animal’s size, low cost and accessibility of the genital tract. However, the number of reports describing semen collection in rabbits, however, is relatively low. We report the development of an inexpensive, artificial vagina assembled from easily obtainable products, which may be used to collect rabbit ejaculates. The artificial vagina was assembled using a 3” T-connector polyvinyl chloride (PVC) pipe (3/4”x3/4”x1/2” openings), 2 rubber chair tips (25mm and 32mm inner diameter), a rubber band, and a condom collection device (HDC, San Jose, CA). The 32mm rubber tip covers the end of a PVC pipe stretched over one end and secured with a rubber band. The 32mm rubber tip covers the end opposite the opened condom. The device is hand-held beneath a sedated doe with the open end pointed in a caudal direction. As the buck begins to mount, the device is placed over the vulva and inferior to allow penetration of the male rabbit into the artificial vagina. Ejaculation occurs rapidly and the device is removed. Two hundred and forty-three ejaculation trials were attempted on 16 rabbits. Eighty-six percent (209/243) of the trials resulted in rabbit mounts. Overall, 91% (191/209) of mounts resulted in successful semen collection (97% by CKN). Observed ejaculate collection rate was achieved. The cost of the reusable device is $2.64, plus silicone condoms at $7.50 each.

This practical artificial vagina for semen collection is an inexpensive and effective means of obtaining sperm from rabbits for andrologic study.

A DOUBLE CHAMBER DEVICE FOR ADVANCED SPERM TESTING: SEMEN ANALYSIS AND AN ASSAY FOR SPERM MATURITY BY HYALURONIC ACID (HA) BINDING

Introduction: We have established that during human spermiogenesis, there is a remodeling of the sperm plasma membrane, which facilitates the formation of the zona pellucida- and HA-binding sites. This occurs simultaneously with cytoplasmatic extrusion and the major expression of the HspA2 chaperone protein. Immature sperm with cytoplasmatic retention show diminished binding to the zona pellucida or to HA-coated surfaces. Other characteristics of immature sperm include abnormal chromatin, increased rates of chromosomal aneuploidy, and a shorter tail length. In this work we studied the diagnostic potential of HA binding for measuring sperm maturity.

Methods: We utilized Cell-VU™ double chamber slides. The A chamber was used for semen analysis, while the B chamber was coated with HA for the sperm binding assay (Biocoat Co., Glenside, PA). Drops of semen in the A and B chambers were video taped at 0-2, 4-6, 8-10, 12-14, 16-18, and 20-22 min. HA binding is expressed as % bound sperm/total motile sperm.

Results: 56 samples were tested. The % HA-bound sperm at the six time points were (mean±SEM): 66.2±4.2%, 75.6±4.3%, 77.4±4.1%, 79.2±4.1%, 78.3±3.9% and 78.6±4.3%. Thus, maximum binding was achieved within 10 min. This was true in samples with different low and high (<50% or >90%) maximum sperm HA binding rates. As cytoplasmatic extrusion and membrane remodeling are both late spermiogenetic events, sperm CK activity and HA binding were closely related (r=0.8, p<0.001, N=56). We also verified that HA-bound sperm are of improved maturity by comparing sperm in semen vs. in HA-bound fractions. Following aniline blue staining, the respective proportion of clear sperm with normal chromat in increased from 63.3% to 92.4%, p<0.001 (N=5 men, 2000 sperm evaluated); the tail length/head axis ratios were: 8.8 vs. 10.5, p<0.001 (N=5 men, 600 sperm evaluated).

Conclusions: This device, on solid scientific basis, allows the analysis of semen and of the proportion of mature sperm. It will improve assessment of sperm maturity, fertility and reproductive toxicity (HD-19505, OH-04061).

A NOVEL HOME-USE TEST DEVICE FOR MOTILE SPERM

Assisted Conception Unit, Birmingham Women’s Hospital B15 2TG, England

Introduction: The concentration of motile spermatozoa is the most predictive parameter for estimating a man’s natural fertility. Currently, this parameter can only be performed by professionally trained technicians in a laboratory setting. Our objective was to develop a simple and reliable test for motile sperm concentration that could be performed by a lay user in their home environment. Materials and Methods: The development of the test device (Fertell) has been performed in conjunction with Genosis Ltd (UK) and has led to a single-use device that incorporates a specimen collection container and testing unit with integral temperature control. Progressively motile sperm separate from liquefied semen by a swim-up process through hyaluronate. After this a fraction of the swim-up is reacted with colloidal gold-labelled anti-CD59 monoclonal antibody and the labelled sperm are trapped on a nitrocellulose lateral-flow test strip. The appearance of a red line (positive result) on the surface of this strip is indicative of 10 x 106 progressively motile sperm in the semen sample. Results: Initially, 50 samples from unselected patients were examined. A comprehensive semen analysis incorporating CASA and a modified Hyaluronate migration test (HMT) was performed in parallel to Fertell. Forty two samples showed a clear result (red line or no red line) with a correct classification of 97.6%. In 8 cases the results was borderline positive (faint red line). In 6 of these samples the HMT was normal and the mean concentration of progressively motile sperm was 8.7 x 106 (range 7.3-9.6). The overall accuracy was 94%. Conclusion: We have successfully developed a simple home-use test device which is completed within 40 minutes.

HUMAN OR ANIMAL FERTILITY — EVALUATION OF OUTCOME TO ESTABLISH UTILITY OF A DIAGNOSTIC TEST OF SPERM QUALITY OR DETECT A CHANGE IN FERTILIZING POTENTIAL OF SPERM

Many consider pregnant vs. non-pregnant status after IUI or copulation the logical endpoint to establish predictive power of a laboratory diagnostic test of sperm quality. This is fallacious (J Androl 21:10, 2000). Success in conventional IVF (e.g., % fertilized ova) might be the best end point, but utility is problematic because excessive sperm are used. How clinically test a fertility molecule? IVF could be appropriate for molecules thought to increase sperm-zona binding or facilitate timely acrosome reactions. IUI is the rational approach for molecules thought to stabilize plasma membranes or enhance interaction of sperm with oviductal epithelium. Ultimately, IUI would be the primary use of fertility molecules. Valid measurement of outcome requires assay conditions placing results on the dose-responsive portion of the curve. This is true for fertility as for hormone concentration. Typically, number of sperm in an IVF droplet or IUI dose substantially exceeds the number needed to maximize "success". IVF co-incubation is long. These maximize fertility, but minimize male effect on the outcome. Conventional IVF almost precludes the right conclusion concerning a diagnostic assay or efficacy of a fertility molecule. Further, IVF samples usually are processed to exclude many sperm; the diagnostic assay must use identical samples. To validate a diagnostic assay: (1) use one standard and limiting number of sperm (e.g., 20,000 in 100 µl) for all NFAs; or (2) measure the outcome most biologically relevant to the sperm attribute measured, and not fertility. To reach the right conclusion concerning a fertility molecule, early fertility studies (either IVF or IUI) should include both "normal controls" and "low-number controls" (untreated), with appropriate doses of molecule added to low-number aliquots. The low-number should be ≤0.5-0.1X the normal value. Balancing goals of detecting differences and establishing pregnancies via IUI, one might use 0.3 x106 bull sperm or 8-10X106 human donor sperm. For humans, alternating use of treated and control low-number insemination doses in 2 successive cycles, followed by IUI of the normal number in the 3rd cycle might be appropriate.
121

PRESENCE OF TIMP-2 ON SPERM CORRESPONDS TO FERTILITY OF RANGE BEEF BULLS

Several heparin-binding proteins (HBP) isolated from bovine seminal fluid capitate bovine sperm in vitro. The 24 kDa protein has been identified as tissue inhibitor of metalloproteinases-type 2 (TIMP-2). TIMP-2 mRNA is expressed in bovine accessory sex glands and TIMP-2 binds to sperm at ejaculation. TIMP-2 is a non-glycosylated HBP recognized by a monoclonal antibody (M1). This study categorized range beef bulls as TIMP-2 positive or TIMP-2 negative in sperm extracts using Western blots or ELISA techniques with the M1 antibody. Fertility data was based on pregnancy rates.

Table I. Fertility of bulls categorized as sperm-associated protein TIMP-2 positive or TIMP-2 negative. Constant ratio of one bull per 25 cows over a 60 day breeding season.

<table>
<thead>
<tr>
<th>TIMP-2 Status</th>
<th>#Bulls</th>
<th>#Cows Bred</th>
<th>%Pregnant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>180</td>
<td>3,955</td>
<td>86.1</td>
</tr>
<tr>
<td>Negative</td>
<td>67</td>
<td>1,225</td>
<td>72.9</td>
</tr>
<tr>
<td>Total</td>
<td>247</td>
<td>5,180</td>
<td>83.0</td>
</tr>
</tbody>
</table>

Math in Table 1 represent a 13% higher fertility rate in bulls which tested positive for TIMP-2 on sperm membranes versus TIMP-2 negative bulls. All breeding trials were conducted using a constant ratio of 1 bull:25 cows during a 60 day exposure period.

Sperm surface-associated TIMP-2 appears to have a direct relationship to fertility potential of range beef bulls. In addition, TIMP-2 presence or absence on sperm surface membranes offers the ability to segregate bulls and predict their fertility potential based on this specific HBP. Additional experimentation is needed to understand TIMP-2 sperm-associated interactions and transduction signal(s) which may contribute to differences in fertility. In conclusion, detection of sperm surface-associated TIMP-2 corresponds to increased fertility of range beef bulls.

122

NONGENOMIC PROGESTERONE RECEPTORS IN HUMAN SPERMATOZOA
M. Luconi, L. Bonaccorsi*, G. Forti, E. Baldi*, Dept. Clinical Physiopathology, Andrology Unit, University of Florence, Italy

Previously results from our laboratory (Luconi et al, 1998) identified a protein of 57kDa on sperm surface as the putative membrane receptor mediating progesterone (P) rapid effects in human sperm. c262 antibody directed against the P binding domain of the genomic receptor identifies this 57kDa band also blocking the biological rapid effects induced by P, suggesting that the surface receptor contains a "conserved" region in the C-terminal. Identification of a third P receptor isoform (C-receptor) showing a weight of 50-60kDa (Wei et al, 1996) and sharing the C-terminal of A and B genomic isoforms, raises the chance that the sperm P receptor (PR) may be similar to the C isoform. To test this, we used two different strategies: RT-PCR amplification of different regions of the genomic receptor using human sperm RNA and isolation and sequencing of proteins by 2D gel electrophoresis after immunoprecipitation with c262. We amplified sequences using all the 5 pairs of primers we designed in 3 different regions of genomic receptor cDNA and performing RT-PCR on RNA from swim up-selected human spermatozoa. In particular, primers to the DNA-binding domain amplified in sperm a band higher than the corresponding one in placenta used as control. A new PR isoform with an expected weight of 57kDa has been reported (Hirata et al 2000) in sperm and contains an additional exon (exon S) close to the DNA-binding domain. We are performing additional RT-PCR experiments with primers in exon S to confirm this result. 2D gel analysis of sperm proteins immunoprecipitated with c262 reveals the presence of 2 spots of 57 and 29kDa with a pH range of 6-7. Microsequencing of these protein spots reveals the presence of peptide fragments with no matching with any sequences in database, suggesting the presence of a new receptor.

123

REDUCTION OF SEMINAL ANTIOXIDANT CAPACITY IN INFERTILE MEN WITH LEUKOCYSTOSPERMIA: A PROSPECTIVE STUDY

Seminal oxidative stress (OS) is an imbalance between levels of reactive oxygen species (ROS) and total antioxidant capacity (TAC). Leukocystospermia is associated with excessive ROS production. The objective of this study was to examine TAC levels in infertile men with leukocystospermia. Semen specimens from 48 infertile men were examined according to the World Health Organization (WHO) guidelines (WHO, 1999). Patient samples were classified into: leukocystospermic (>1*106 leukocytes/mL semen; n=16) and non-leukocystospermic (<1*106 leukocytes/mL semen; n=32); and 13 normal donors served as controls. Seminal TAC was measured by an enhanced chemiluminescence assay and results expressed as Trolox equivalent. Sperm motility was significantly reduced in leukocystospermic group compared to non-leukocystospermic group (P=0.04) and donors (P=0.001). Sperm concentration and normal forms were significantly reduced in leukocystospermic group compared to donors (P=0.008 and 0.0003, respectively). Levels of TAC (median [25TH & 75TH percentiles]) in leukocystospermic group was 636 [437, 982] compared to 986 [847, 1199] in non-leukocystospermic group (P=0.04) and 989 [863, 1534] in donors (P=0.01). Seminal leukocyte concentrations were negatively correlated with TAC levels (r=-0.34, P=0.007). In conclusion, sperm from infertile men with leukocystospermia may be at higher risk of OS due to reduction of ROS scavenging capacity in semen. Low seminal TAC in leukocystospermic patients suggests the potential benefit of antioxidant supplementation in lowering OS status and, in turn, improving sperm quality in these patients.

124

MEIOTIC ABNORMALITIES IN AZOOSPERMIA AND BILATERAL VARICOCELE
G. TRITTO*, M.-O. NORTH*, Service of Urology, Saint-Louis Hospital, *Service Histologie-Embryologie-Cytogenetique, Saint Vincent de Paul – Cochin, Paris, France

International Association of Sciences and Technologies in Andrology – IASTA - e-mail: tritto@magic.fr

On 127 patients with bilateral varicocele and severe male infertility factor, azoospermia is associated in 23% of cases. Testicular biopsies realized during the microsurgical correction show an incidence of ~ 10% of Maturational Arrest (MA): 44.5% of cases express a bilateral MA.

In the azoospermic population with bilateral varicocele, 39.3% do not present any spermatocyte and 32.1% have a normal meiotic behaviour. Meiotic abnormalities, classified in pure genetic and pure toxic, evaluated for each biptic sample and for each testis in the azoospermic cases with or without MA, show an incidence of 28.6%. Meiotic abnormalities are classified in four groups: I – Abnormal DNA coiling pattern type; II – Asynaptic type, distributed in IIA: association between lack of SV formation and abnormal pairing in all stages (Hulten et al., 1974); IIB: complete asynapsis resulting in late-zygote arrest (Navarro et al., 1980); IIC: meiotic impairment secondary to unfavourable physiological background (Speed and Chandley, 1990); III – Desynaptic type (Templado et al., 1978); IV – Chiasmate abnormalities (Navarro et al., 1980).

21.5% of cases present pure genetic abnormalities, distributed in: Class I – absent; Class IIA – 7%; Class IB – 7%; Class III – absent; Class IV – 7%. In class II, no spermatids or spermatozoa are present; in the other classes, a complete spermatogenesis is represented: some risk of meiotic gene mutation transmission (Hulten et al., 1974; Templado et al., 1986) and high risk of aneuploidy in Class II and IV (Templado et al., 1986) are detected and described.

7% of cases present pure toxic meiotic abnormalities (Class IIC) as partial asynapsis, high rate of sex vesicle-autosome association (more than 4.8%), chromosomal breaks.
125

INFLUENCE ON THE PREGNANCY OF MOTILITY OF FRESH AND FROZEN-THAWED TESTICULAR SPERMATOZOA IN OBSTRUCTIVE AZOSPERMIA

Objective: Testicular sperm using ICSI could achieve optimal fertilization and pregnancy. We performed to observed the influence on fertilization and pregnancy of motility of fresh testicular sperm and sperm extracted from thawed tubule in obstructive azoospermia.

Materials and Methods: We analyzed results of ICSI using fresh testicular sperm and sperm extracted from thawed tubule. The presence of motility were compared to determine the influencing factor for optimal fertilization and pregnancy rates. Results: In 316 cases TESE-ICSI, ICSI using fresh testicular sperm extracted from frozen-thawed tubule (thawed sperm group) were 153 cases. In fresh sperm group, fertilization rates were 71.3% and pregnancy rates were 32.5%. In thawed sperm group, fertilization rates were 65.1% and pregnancy rates were 33.3%. The fertilization and pregnancy rates of motile and non-motile testicular sperm were 72.9% and 33.6%, 50.0% and 18.2%, respectively (p<0.05). The fertilization and pregnancy rates of motile and non-motile sperm extracted from the thawed tubule were 67.8% and 34.7%, 55.1% and 28.1%, respectively (p<0.05). A comparison of the results of ICSI using motile fresh testicular sperm and motile sperm extracted from thawed tubule, fertilization and pregnancy rates were not significantly different (72.9% and 33.6%, 50.0% and 18.2%, respectively). Conclusion: Our results suggest that successful pregnancy in TESE-ICSI treatment is influenced by motility of fresh testicular sperm and sperm extracted from thawed tubule in obstructive azoospermic patients.

126

EFFECTS OF TWO TECHNIQUES OF LEFT VARICOCELECTOMY (VRCL) ON FERTILIZATION AND EMBRYONIC CAPACITY FOR IMPLANTATION

A. Chatzizyriakidou,1* Ch. Mamoulakis,1 A. Kaponis,1 X. Giannakopoulos,1 11 Miyagawa,2* D. Tsaki,1* D. Yiannakis,1 N. Sofikitis,1,2; 1 Dept of Urology, Ioannina University, Ioannina, Greece, 2 Dept of Urology, Tottori University, Yonago, Japan

We evaluated the effects of two techniques of left VRCL on and beyond fertilization. 22 infertile men with left varicocele were divided into two equal groups A and B. The standard parameters of semen analysis did not differ significantly between groups. Spermatozoa were collected and processed for ICSI techniques into donor oocytes. Fertilized oocytes were measured. There were no significant differences in FS between groups. Groups A and B were treated with retroperitoneal and subinguinal microsurgical VRCL, respectively. 12-15 months postoperatively, spermatozoa were collected and processed for ICSI techniques into donor oocytes. 12-15 months postoperatively, group B showed significantly larger (p<0.05, Wilcoxon s test) mean values of sperm concentration (SC), % motile spermatozoa (MS), fertilization rate (FR), % injected oocytes processed up to the blastocyst stage, and embryonic FS (220±14 IU/ml vs 168±247 IU/ml) than group A. Within groups, SC, % MS, FR, and embryonic FS were significantly larger postoperatively than preoperatively. Both retroperitoneal and microsurgical VRCL have a beneficial effect on spermatogenesis and epididymal sperm maturation process. Both techniques result in the production of spermatozoa that a) have higher potential for fertilization and b) generate embryos of higher potential for implantation. Microsurgical VRCL may be the treatment of choice.

127

PREVALENCE OF VARICOCELE IN CHILDREN AND ADOLESCENTS IN NAMHAE, KOREA; 3-YEAR FOLLOW-UP STUDY

Purpose: Whether there is a definite influence of varicocele upon future fertility is still debated. We analyzed the results of physical examinations of children and adolescents and compared with the exam records performed 3 years previously to find out the natural course of the varicocele.

Materials and Methods: The study population consisted 3271 school aged boys in Namhae County, Korea. A total of 2871(97.8%) boys aged 7-17 years underwent examinations, All examinations were carried out by urologists in May 1998 and June 2001 as part of annual school physical exam. Results: The mean age was 12.77 years. The prevalence of varicocele was 6.38% (237/2871). There were a peak varicocele prevalence from aged 14 to 16 (13.52%), 15 to 17 (17.8%). The incidence of adolescents (13-18 years) was 13.7% (210/1529). The prevalence according to age were 7-10 years 0.6%, 11 years 3.2%, 12 years 6.6%, 13 years 9.2%, 14 years 10.4%, 15 years 9.5%, 16 years 16.1%, 17 years 17.8%, and 18 years 12.8%. While the varicocele was unobserved almost in elementary student fewer than 11 years old, showed the highest incidence at 15-17 years old, and decreased in 18 years old. The proportion of varicocele grades were grade I 43.75%(104/237), II 34.17%(82/237), and grade III 22.08%(52/237). Eighty-nine boys out of 161 was followed for 3 years and found out that 68(76.4%) had either disappearance or decrease in varicocele. Conclusion: As reported previously, J Androl Suppl 112, 2001. The prevalence of varicocele was evident in 13-17 year group and tend to decrease afterwards. The observation that many varicoceles decrease after 3 years should allude medical personnel for more prudent clinical decision.

128

THE USE OF CYANOACRYLATE IN NEW TECHNIQUE OF VASOVASOSTOMY

Chavarria-Guevara J; Sanchez G M; Garcia J; Foyo N E; Moreno A J; Tapia-Serrano R. Andrologia Urológia- Hospital de Especialidades del CMN Siglo XXI, IMSS. México, D.F.

Introduction. The microsurgical technique for vasovasostomy has been performed exclusively to reverse vasectomy. However the microsurgical technique needs a special training and its performing require long time and high cost. Objective. To show a new technique of vasovasostomy with ethyl-cyanoacrylate adhesive and to show the patency of vas deferens and its implications. Material and Methods. It was selected 6 male rabbits White New Zeland. The materials were 10-0 nylon sutures and ethyl-cyanoacrylate adhesive. Semen analysis were practiced in before they underwent surgical procedure. The ethyl-cyanoacrylate was incubated during 72 hrs. in culture mediums. The group underwent section and vasovasostomy by microscopic vision. The each end of the vas was approximated by two transmural sutures, followed by the application of cyanoacrylate circumferentially. Three months later we recollected semen and then they were killed; the vas deferens were recovery and studied their patency by macroscopic tests and histopathology study. Results. The cultures of cyanoacrylate were negative. The average surgical time was 55.6 min. One of 6 animals dead 2 days after surgery for respiratory complications. In the rest of the group patency was showed in nine vas deferens and obstruction was showed in only one. The semen were founded in all rabbits and the suture and methilen blue passed through vas lumen. The histopathology studies show the integrity of the muscular layer and inflammation in the site of sutures. The mucosal layer and the lumen were normal. Conclusions. This technique is a good alternative for vasovasostomy, and the surgical time is shorter.
FERTILITY AFTER CANCER: A PROSPECTIVE REVIEW OF ASSISTED REPRODUCTIVE OUTCOME WITH BANKED SEMEN SPECIMENS Pavithra Ranganathan, Jaswinder Chauhan, Mehmet Oder, Fabio F. Pasqualotto, Jorge Hallak, Hiroshi Kobayashi, Anthony J. Thomas, Ashok Agarwal, The Cleveland Clinic Foundation

Our study aimed to determine the need for semen banking in patients with cancer by evaluating their fertility outcomes with assisted reproductive techniques (ART) using pre-treatment semen specimens. Our sperm bank records were used to identify individuals who withdrew semen specimens for assisted reproduction. Study subjects were men recently diagnosed with cancer that sperm banked prior to undergoing therapy. All patients (n = 25) had their specimens transferred to various assisted reproduction programs of their choice. Information on fertility potential indices was obtained from medical records and by direct interviews. Patients were stratified by their cancer, testicular cancer (n = 10, 66.6%), and not significantly different from that in PBO-treated patients. The AEs reported included tachycardia, nausea, and dizziness.

TADALAFIL PROVIDES PROMPT RESPONSE AND EXTENDED PERIOD OF RESPONSIVENESS FOR THE TREATMENT OF MEN WITH ERECTILE DYSFUNCTION

Objectives: Tadalafil is a potent and selective phosphodiesterase type 5 inhibitor under review for marketing approval for the treatment of erectile dysfunction (ED). The time to onset (TT0: elapsed time from dosing to attainment of first erection resulting in successful intercourse) and period of responsiveness to tadalafil in men with erectile dysfunction ED were assessed in two phase 2 studies. Methods: In a double-blind, crossover, RigiScanTM study, 61 men received tadalafil 10 mg or placebo. Immediately after dosing and 24 hours after dosing, patients underwent RigiScan evaluations during visual sexual stimulation. Endpoints included TT0 of response (≥55% penis rigidity for ≥3 consecutive percent responders, and cumulative time of rigidity ≥50% in an at-home study, 223 men received tadalafil 10 or 20 mg or placebo with instructions to take study drug every 8–10 days (4 doses total) when ready to engage in sexual activity. No instructions restricting food or alcohol consumption were given. TTO (measured by stopwatch) was recorded in diaries. Results: In the RigiScan study, tadalafil provided a trend within 30 minutes and a statistically significant response vs placebo at 45 minutes (P = 0.034) and 24 hours (P < 0.001). In the at-home study, response to tadalafil 20 mg was significantly greater than placebo as early as 16 minutes after dosing (P = 0.012). The mean time for achievement of erection among responders was 17 minutes. In both studies, tadalafil was well tolerated and there were no treatment-related serious adverse events. Conclusion: In this research, tadalafil 20 mg enabled the onset of erection sufficient for completion of intercourse as early as 16 minutes after dosing and the period of responsiveness of tadalafil extended to at least 24 hours after dosing.
ARE COMPLICATIONS NECESSARILY MORE COMMON WITH COMPLEX PENILE PROSTHESIS IMPLANTATION?

INTRODUCTION: We compared the surgical approaches, types of penile prostheses used, success and complications involved in simple and complex penile prosthesis implantation. METHODS: We reviewed the charts of 103 patients who underwent penile prosthesis implantation from 9/95 to 9/2000. 74 patients with complete records and documented follow-up were included in this study. Simple penile prosthesis implantation is defined as the first implantation with no corporal fibrosis. Complex penile prosthesis implantation is for patients with significant corporal fibrosis, previous infection, history of corporal surgery or injury, and simultaneous implantation with artificial urinary sphincter. RESULTS: Fifty-eight percent (43/74) of patients had simple penile prosthesis implantation. 41.9% (31/74) of patients underwent complex penile prosthesis implantation. Simple penile prosthesis implantation was successfully performed through a single incision in all patients. 22.6% of complex penile prosthesis implantation surgeries required combination incisions (P<0.05). Inflatable penile prostheses were used in 93% (40/43) and 90% (28/31) of patients for simple and complex penile prosthesis implantation, respectively (P>0.05). The mean follow up was 27.5 months with functional prostheses in place in 97.7% and 96.8% of patients with simple and complex penile prosthesis implantation, respectively (P>0.05). Prosthesis infection, malposition, prolonged pain, and hematoma were not significant in the two groups. CONCLUSIONS: Simple penile prosthesis implantation can be successfully performed with minimal complications compared to simple penile prosthesis implantation.

PROSPECTIVE STUDY OF PREOPERATIVE AND POSTOPERATIVE NOCTURNAL PENILE TUMESCENCE (NPT) IN MEN UNDERGOING BILATERAL NERVE SPARING RADICAL PROSTATECTOMY (BNSRRP)

R. Wang, Rupesh Raina*, Larry Levine1, Harin Padma, Nathan2

New York University1, NY, Rush University2, IL, University of Southern California3, CA

Introduction: A previous study has shown a dramatic loss of NPT in impotent men after BNSRRP. Preoperative scans were lacking in this population of previously potent men. We undertook a study to prospectively evaluate pre and post operative NPT in men undergoing BNSRRP. Methods: Between June 1999 and September 2000 54 men were selected to undergo pre and post operative NPT testing with RIGICAN PLUS®. After informed consent, they were screened for ED by IIEF. Excellent natural function by IIEF was required for inclusion in the study. All men had their surgery performed by three high volume radical prostatectomists. In order to qualify for a postoperative scan they had to have clear documentation of BNSRRP and have organ confined disease (PT2 or less). Results: 54 men completed the study. The average age was 58

<table>
<thead>
<tr>
<th>Duration of rigidity>55% Base (minutes)</th>
<th>Duration of rigidity>55% Tip (minutes)</th>
<th>Area under curve (AUC) rigidity Base</th>
<th>AUC rigidity Tip</th>
<th>AUC tumescence Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preop</td>
<td>69</td>
<td>6.8</td>
<td>55</td>
<td>52</td>
</tr>
<tr>
<td>Postop</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P value</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Conclusion: Potent men undergoing BNSRRP experience a profound loss of nocturnal penile activity at one month. The loss of NPT is undoubtedly related to a neuropraxia, as it has previously been shown that arterial damage rarely occurs after BNSRRP. This loss of NPT if prolonged may predispose to chronic corporal hypoxia and corporal smooth muscle fibrosis. Longitudinal studies of erectile function are currently being concluded.

LONG-TERM INTRACavernous (IC) THERAPY RESPONDERS CAN POTENTIALLY SWITCH TO SILDENAFIL CITRATE AFTER RADICAL PROSTATECTOMY (RPP)

Rupesh Raina*, RA Saleh*, Jaswinder Chauhan*, Sandra Amsmundson*, Milton M Lakin*, Ashok Agarwal, Craig D Zippe*, Urological Institute, Cleveland, Ohio

To assess whether long-time users of IC injections after RP can switch to oral therapy with sildenafil citrate. Thirty-six patients (mean age 60.9 yrs) with erectile dysfunction (ED) following RP were identified as long-term users of IC injection (mean 2.5 yrs). Prostaglandin (PG) E1 was used in 61% and Trimex solution (PGE1, papaverine, phenolamine) in the remaining 39%. The abridged 5-item International Index of Erectile Function (IIEF) questionnaire was used to assess the outcome with IC. These 36 patients received open lable sildenafil orally (50-100mg) for a minimum of 5 attempts. Following sildenafil use, patients were assessed with the abridged IIEF, partner satisfaction, and compliance to therapy. Of the 36 patients, 41% (15/36) successfully switched to sildenafil and discontinued IC injection. Thirty-eight percent (14/36) found sildenafil ineffective and remained on IC injection. Nineteen percent (7/36) found sildenafil alone to be suboptimal but continued using it, enhancing the efficacy of IC injections alone. Long-term users of IC injection therapy can potentially switch to sildenafil citrate with acceptable sexual satisfaction. Some long-term IC users (20%) can enhance sexual satisfaction with the addition of sildenafil citrate.

COMBINATION THERAPY: SILDENAFIL CITRATE ENHANCES SEXUAL SATISFACTION IN VACUUM CONSTRUCTION DEVICE (VCD) FAILURES FOLLOWING RADICAL PROSTATECTOMY (RRP)

To assess the effectiveness of combining sildenafil citrate with VCD in men unsatisfied with the results of VCD alone. Thirty-one patients unsatisfied with the early use of VCD alone following RP (mean follow-up of 4.5 months) were instructed to take 100mg of sildenafil 1-2 hours prior to VCD use for sexual intercourse. Patients used combination therapy for a minimum of 5 attempts prior to assessment with the abridged International Index of Erectile Function (IIEF) questionnaire and a visual analogue scale to gauge rigidity. The effect of combination therapy on total IIEF-5 score and penile rigidity score were assessed. Of the 31 patients, 7 (22%) had no improvement with the addition of sildenafil with VCD and discontinued the drug, while 24 (77%) reported improved penile rigidity and sexual satisfaction. In these 24 patients, the IIEF-5 score showed significant improvement in each domain and patients reported that sildenafil enhanced their erections 100% of the time. Rigidity scores on a scale of 0-100 with VCD alone averaged 55% (23-85) for men and 59% (26-90) for their partners. With the addition of sildenafil, it increased to 76% for men and 82% for their partners. Thirty percent (7/24) reported the return of natural erections at 18 months using combination therapy with 5/7 sufficient for vaginal penetration. The addition of sildenafil with VCD improved sexual satisfaction and penile rigidity in patients unsatisfied with VCD alone.
SILDENAFIL PLUS SERTRALINE IN THE TREATMENT OF PREMATURE EJACULATION. Dr.A.Fernandez Lozano M.D.Urologist; Catalan Health Institute.Barcelona. Spain.

INTRODUCTION. Premature ejaculation (PE) is a very common sexual dysfunction, which is believed to affect a 35% of men. Defined as the inability to exert an adequate voluntary control on ejaculation after reaching a high degree of sexual arousal. Organic etiology is not frequent. Many of our patients are reluctant to follow psychotherapy for several reasons (economic, cultural, social).

MATERIAL AND METHODS. Delayed ejaculation is one of the most common side effects of a wide number of antidepressant agents and sildenafil is well known as a producer of a better quality of erection. We report a study to assess the efficacy of sertraline and sildenafil plus sildenafil in patients complaining of PE. A total of 62 patients with PE in different grades of involvement, ages ranging 23 to 65 years were studied. Of them, 46 had stable partner, while the others were single, divorced and widowers. Almost two thirds said had always suffered Primary Premature Ejaculation patients are reluctant to follow psychotherapy for several reasons (economic, cultural, social).

CONCLUSIONS. Sildenafil citrate helps obtain a better erection and significantly improves the ejaculatory latency time increased from 0.9 minutes to a mean of 4.6, while in the sildenafil group increased from a baseline of 0.5 to a mean of 5.2. The patients with stable partner were asked to rank their sexual life from 0 to 5 (being 5 the sexual maximum satisfaction). This parameter also increased in both groups from 0.5 to a mean of 3.4 in the sildenafil group. CONCLUSIONS. Sildenafil citrate helps obtain a better erection and combined with sertraline affects positively to those patients whom either for age or because they’ve started a new couple relation, associate PE and erectile dysfunction. An increased satisfaction of their sexual life was the response about a 70% of the patients in our study.

INTRODUCTION: Yachia initially described his modification of the Nesbit procedure for the surgical treatment of Peyronie's Disease in 1990. We describe a single surgeon's experience with the Yachia procedure over a seven year period to determine if the procedure remains an effective intervention with adequate patient satisfaction. METHODS: A single surgeon's results at two institutions are presented. Previously published data (1994-1996) were compared to the surgeon's current series. The most recent data consisted of a retrospective chart review of 22 Yachia procedures performed from 12/1997 to 8/2001 and a phone survey consisting of the Sexual Health Inventory for Men plus five questions specific to the Yachia. Fourteen cases had complete records and phone survey and are included for analysis. RESULTS: The surgeon's initial series (Group 1) consisted of 30 patients with the mean age of 51 years. Our most recent series (Group 2) includes 34 patients with a mean age of 49 years. Average preoperative curvature in Group 1 was 38 degrees and in Group 2 was 55 degrees. Other preoperative parameters including previous treatment, erectile dysfunction and trauma were comparable. Penile curvature was eliminated or significantly improved in 93% in both groups. Patient satisfaction was 83% in Group 1 and 79% in Group 2. The major complaint in both groups was penile shortening - 67% in Group 1 and 86% in Group 2. CONCLUSION: The Yachia procedure remains an efficacious surgical treatment for Peyronie's disease. The majority of patients are satisfied with their outcomes, however counseling for penile shortening should be performed prior to intervention.

A prospective observational study was conducted to determine the PR after insemination of sperm with subnormal HOST scores (<50%) after correcting the scores (>50%) following treatment with the protein digestive enzyme, chymotrypsin. Infertile couples where the male partner was found to have a minimum of 5x10^6/ml sperm motility density and a HOST score <50% were given the option of immediately proceeding to in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI) or trying some IUI treatment cycles with chymotrypsin-galactose treated sperm. Only those males where the HOST score improved to >50% were given the option of IUI. There were 90 IUI cycles and there were only 3 viable pregnancies (3.3% viable PR/treatment cycle). The most IUI cycles were in cycle 1 (n=39) and 2 (5.1%) achieved viable pregnancies. During this same time the viable PR following IVF with ICSI was 33.3%. These data confirm previous studies that sperm with HOST scores <50% rarely achieve pregnancies. Treatment of sperm with subnormal HOST scores allowed 3 more cases of viable pregnancies added to the 4 previously reported ones. However with expansion of the number of cycles to 90 compared to the previous 12 cycles evaluated, it is now clear that treatment of sperm with chymotrypsin, even when correcting the HOST scores, pales in comparison to success with IVF with ICSI. Sperm with low HOST scores are hypothesized to transfer a toxic factor (possibly proteinaceous) from the sperm to the zona pellucida by the supernumerary sperm which is bypassed by ICSI.
EFFECT ON PSA LEVELS OF THE NOVEL, DUAL 5A REDUCTASE INHIBITOR, DUTASTERIDE WITH MARKED SUPPRESSION OF HYDROTESTOSTERONE

RV Clark1, TH Wilson*1, CG Roehrborn*2, G Andriole*3, IGlaxo Smith Kline, Research & Development, Research Triangle Park NC, 2Dep of Urology, Univ of Texas Southwestern Med Center, Dallas, TX, 3Dept of Urology, Washington Univ Med Center, St Louis, MO

Introduction: Dutasteride is a novel 5αreductase inhibitor (5ARI) being evaluated for the treatment of BPH. Dutasteride acts on both type 1 and type 2 isozymes and suppresses serum DHT >90% from baseline. PSA levels are also suppressed by 5ARI, and type 1 inhibition suppresses total PSA @ 50%. This study evaluated the effect of dual 5ARI on total and free PSA levels. Methods: The study population was 674 subjects drawn from a Phase III trial of 24 months comparing dutasteride 0.5mg vs placebo for treatment of BPH associated symptoms and complications. The subset was based on availability of total and free PSA measures at baseline and month 12 of the study. Results: In the placebo group, total PSA, free PSA, and the F/T PSA ratio changed little from baseline to month 12 (median increases were 4.0%, 5.3% and 2.0% respectively). Dutasteride treatment resulted in median decreases of 52.5% for fPSA and 61.0% for fPSA. The F/T PSA ratio decreased from 0.22 to 0.18 (14.7% decrease). DHT decreased in dutasteride group > 92%. Conclusions: Potent dual SAR inhibition by dutasteride lowers total PSA by about 50% preserving the utility of the 2X correction factor usually applied to 5ARI inhibition despite marked DHT suppression. The F/T PSA ratio is decreased slightly, but its utility is maintained for detection of prostate cancer.

INDEXING ATYPICAL CYTOLOGY TO NMP22 DECREASES FALSE-POSITIVE RESULTS

Rupesh Raina*, Heather Klepacz, Jaswinder Chauhan, Lee Ponsky, Shashikala Sharma, David R Nelson, Ashok Agarwal, Craig D Zippe, Urological Institute, Cleveland, OH

To assess atypical cytology as a positive bladder tumor marker and to determine if indexing atypical cytology to NMP22 can decrease false-positive results (or increase the positive predictive value (PPV)). One hundred ninety-seven patients at risk for bladder cancers were identified as having atypical urinary cytology. One hundred twenty-six were incident (screening) cases and 71 were prevalent (monitoring) cases of bladder cancer. Office cystoscopy was performed on all patients with atypical cytology. All cancers were histologically confirmed and patients had a negative upper tract study within a 12-month interval. The atypical cytologies were then indexed to NMP22 values in an effort to decrease false-positive results. In the screening cases, the 126 atypical cytologies detected 17 cancers for a positive predictive value (PPV) of 13% (17/126). When stratified by NMP22, cutoff value of >10U/ML, PPV increased to 71% (15/21). In the monitoring cases, the 71 atypical cytologies detected 43 cancers for a PPV of 61% (43/71). When stratified by NMP22 cutoff >6U/ML, PPV increased to 92% (35/38). The clinical utility of atypical cytology was significantly enhanced in both screening and monitoring for bladder cancer when indexed to NMP22.

TARGETED MULTICOLOR FLUORESCENCE IN SITU HYBRIDIZATION (FISH) DETECTS TRANSITIONAL CELL CARCINOMA (TCC) IN PATIENTS WITH ATYPICAL TRANSITIONAL CELLS BY URINARY CYTOLYSIS

R Raina*, M Skacel*, L Liou*, A Agarwal, RR Tubbs*, CD Zippe*, Cleveland, OH

A multitarget FISH probe set containing probes to the centromeres of chromosomes 3, 7, 17 and to the 9p21 band has been recently shown to have high sensitivity (81%) and specificity (96%) for the detection of TCC. Using our modified method for ThinPrep slides, we retrospectively tested 80 cases diagnosed as atypical transitional cells by urinary cytology. We evaluated the ability of FISH to identify malignant cells in cytologically equivocal cases where morphology alone does not allow definitive diagnosis. Archived slides from 80 voided or instrumented urine specimens from 63 patients with concurrent bladder biopsy data were retrospectively analyzed and subjected to hybridization with the multicolor FISH probe UroVysion (Vysis). The cohort included patients with biopsy proven grade I (n=11), II (n=26), III (n=18) TCC, CIS (n=5), stage pTa (n=48), T1 (n=5), T2 (n=3), T4 (n=2) and negative histology (n=20). Positive FISH result was defined as 5 or more transitional cells with alteration of 2 or more chromosomes or 20 cells with 9p21 deletion. All except 5 (all pTa tumors) TCC cases were positive by FISH (92% sensitivity). 9 patients positive by FISH had negative concurrent biopsy, however, 8 of them developed recurrent TCC (including one invasive T2 tumor) within a 6-month period. The only false positive patient had previously documented CIS also present in the immediately consecutive biopsy 15 months later. None of the 8 patients with negative biopsy and negative 6-month follow-up were FISH positive. FISH provides high sensitivity (92%) and specificity (91%) in targeted evaluation of cytologically equivocal transitional cells. The results suggest close follow-up of patients with a negative cystoscopy/biopsy but positive FISH results.
If you know a child with muscular dystrophy who can benefit from a special getaway, tell him or her about MDA summer camps. They're fun and free!

MDA
Muscular Dystrophy Association
Jerry Lewis, National Chairman
1-800-572-1717 • www.mdausa.org

People Help MDA ... Because MDA Helps People